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Propagation and stability of waves of electrical activity in the cerebral cortex
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Nonlinear equations are introduced to model the behavior of the waves of cortical electrical activity that are
responsible for signals observed in electroencephalography. These equations incorporate nonlinearities, axonal
and dendritic lags, excitatory and inhibitory neuronal populations, and the two-dimensional nature of the
cortex, while rendering nonlinear features far more tractable than previous formulations, both analytically and
numerically. The model equations are first used to calculate steady-state levels of cortical activity for various
levels of stimulation. Dispersion equations for linear waves are then derived analytically and an analytic
expression is found for the linear stability boundary beyond which a seizure will occur. The effects of bound-
ary conditions in determining global eigenmodes are also studied in various geometries and the corresponding
eigenfrequencies are found. Numerical results confirm the analytic ones, which are also found to reproduce
existing results in the relevant limits, thereby elucidating the limits of validity of previous approximations.
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PACS number~s!: 87.22.Jb, 87.22.As, 87.101e
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I. INTRODUCTION

Measurement of electrical activity in the cerebral cort
by means of electrodes on the scalp or the cortical surfac
a commonly used tool in neuroscience and medicine.
tailed multichannel recordings of activity resulting from ne
ronal firings are routinely made, showing complex spa
and temporal patterns in the cortical regions where cogni
tasks are performed. These signals, known as electr
cephalograms or EEGs, display sufficient consistency
their coarse morphological and spectral features may be
pirically identified and quantified. The frequency content
EEG and variations in the power spectrum with cognit
state have been well characterized@1#, velocities of EEG
waves have been estimated@2#, and typical features of the
EEG response to external stimuli~so-calledevent related po-
tentials! have been measured. Unfortunately, the connec
between recorded EEGs and the underlying neuronal dyn
ics ~anda fortiori cognition! remains poorly understood. A
few of the most basic properties of cortical waves appea
be established@3#, but virtually everything beyond this leve
is the subject of considerable debate and the wealth of
perimental data is largely wasted in the absence of a m
solid theoretical framework within which to analyze it.

Numerous models of cortical activity have been dev
oped at a variety of levels of description. At the most fund
mental level are neural networks, which attempt to desc
the interconnections between individual neurons with va
ing degrees of idealization@4#. We term such simulations
microscopicbecause of their incorporation of microstructu
and neglect of long-range interconnections. Most nota
Freeman has modeled the EEG arising from the olfact
bulb of animals, during the perception of odors, by uniti
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estimates of physiological parameters within a system
nonlinear equations@5#. However, other methods are calle
for when models for microscopic, highly nonlinear neuron
events are extended to the large scale required to describ
macroscopic EEG waves of the cerebral cortex. Becaus
the huge numbers of neurons (;1010) in the cortex,
smoothed-parameter models have been introduced to s
global properties of cortical activity. Such models implicit
treat the cortex as a continuum~although they may be dis
cretized for computation!, characterized by mean densities
interconnections between neurons~which occur atsynapses!,
mean neuronal firing rates, etc., with means taken over
umes large enough to include many neurons. Theoretical
tifications for this ‘‘mass action’’ approximation have bee
given by Stevens@6# and Wright and Liley@7# and the re-
sulting match with experimental findings has been discus
by several authors@7#.

Both microscopic and continuum models typically inclu
both excitatory and inhibitory inputs to a given neuron
which may itself be either excitatory or inhibitory in its ac
tion on other neurons. Excitatory inputs tend to increase
firing rate of a given neuron, while inhibitory ones reduce
with both effects being nonlinear due, for example, to sa
ration at a maximum physiologically possible firing rat
Thus, in general, continuum models must incorporate m
densities of both populations of neurons, and of both type
interconnections, as well as the two neuronal firing rat
Delays in the propagation of signals through neurons~which
are highly elongated! must also be included. These dela
are of two types:dendritic lags, in which incoming signals
are delayed in the dendritic fibers~see Fig. 1!, andaxonal
delays of outgoing signals due to the finite propagation
locity along the axon.

The first continuum model@9,10# included excitatory and
inhibitory populations in an infinite, linearized, one
dimensional~1D! model. With suitable adjustment of param
eters, this model was able to reproduce the character
;10 Hz frequency of the alpha rhythm, but omitted nonli
826 © 1997 The American Physical Society
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56 827PROPAGATION AND STABILITY OF WAVES OF . . .
ear effects, axonal delays, and the convolutions of the cor
Nunez@11,12# added axonal delays in order to investiga

global modes. This model permitted wave solutions a
with the imposition of boundary conditions, the excitation
global eigenmodes. Nunez solved this model analytically
a 1D loop cortex, and for two-dimensional cortexes w
periodic and with spheroidal boundary conditions~i.e., ig-
noring the more complicated convoluted form of the re
cortex, and the inhomogeneity of cortical connections!, inter-
preting observed cortical wave frequencies in terms of d
crete eigenfrequencies. This model predicted global mo
whose frequencies approximately match those of the m
cerebral rhythms. In particular, the alpha rhythm was int
preted as being at the fundamental cortical eigenfrequen

Wright and Liley @13–15# introduced a spatially dis
cretized model in which the cortex is treated as 2D and
vided into patches, each of which is parametrized by
mean densities of excitatory and inhibitory neurons, th
mean firing rates, and their mean densities of interconn

FIG. 1. A typical neuron of the cerebral cortex, from a Go
stain~Ref. @8#!. The scale bar represents 0.1 mm. Pulsed signals
generated at the soma (s) and propagate over the axonal tree (a) to
make contact, at synaptic junctions, with the dendritic trees (d) of
thousands of other neurons. Synaptic inputs are summed by
dendrites, and axonal pulses generated if the soma is depola
beyond the cell’s threshold.
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tions ~i.e., of synapses!. Nonlinear effects and axonal an
dendritic delays were all included, with a Green-function fo
mulation describing the interconnections between patche
a function of their spatial and temporal separation. T
model incorporated all relevant effects mentioned above,
cept convolutions and nonuniformities in cortical connect
ity, while allowing for the imposition of a variety of bound
ary conditions. Moreover, its parameters were larg
physiologically measurable, a significant advantage wh
comparing its predictions with measurements. Howev
simulations based on it have been limited to very small s
tems~or very coarse resolution in larger systems! due to its
formulation in terms of Green functions, which are very slo
to evaluate, and a numerically intensive treatment of d
dritic lags.

The central purpose of this paper is to introduce a mo
of cortical electrical activity which includes nonlinearitie
axonal and dendritic time lags, variable geometries a
boundary conditions in 2D, and which permits analytic stu
ies of wave properties and stability, while speeding com
tation to the point that whole-cortex simulations are possi
with good resolution. This is accomplished in Sec. II
introducing a continuum wave-equation model to replace
linear parts of Wright and Liley’s@13–15# discrete Green-
function one, and also by simplifying their treatment of de
dritic lags. The new model is not identical to that of Wrig
and Liley, but incorporates the same underlying neuroph
ics to a similar degree of approximation. Neither model a
dresses the question of filtering of cortical signals throu
the skull to determine the scalp EEG, a problem that can
avoided in any case by using magnetoencephalogr
~MEGs! based on the magnetic signals associated with n
ral activity. The task of the remainder of the paper is to l
the mathematical basis for analysis of this model and ob
its basic properties. In Secs. III and IV we investigate t
steady-state properties of the model and study the prop
tion and stability of small perturbations in the limit of a
infinite medium. Periodic and spherical boundary conditio
are imposed in Sec. V to investigate the properties of glo
eigenmodes and the eigenfrequencies are calculated for
cal human parameters. An algorithm for numerical study
our model is described in Sec. VI and its output is used
verify key analytic results obtained in earlier sections.

II. CORTICAL MODEL

In this section we describe the relevant neurophysics
neurophysiology and incorporate it into a continuum mo
of cortical activity. The relationships of this model to tho
of Wright and Liley @13–15# and Nunez@11,12# are de-
scribed in this section and Sec. IV, respectively.

A. Model equations

An excitatory neuron such as the one shown in Fig
emits pulses~i.e., fires! at a mean rateqe that is determined
by the potentials generated in the dendritic tree by the s
aptic inputs of thousands of other neurons. Threshold po
tials, above which high firing rates occur, are not identi
for all neurons, but have a centrally peaked distribution. W
can then make a continuum approximation by replacingqe
with a local mean valueQe , averaged over many neuron
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828 56P. A. ROBINSON, C. J. RENNIE, AND J. J. WRIGHT
and introduce the mean dendritic potentialVe . Similar con-
siderations apply for inhibitory neurons, denoted by the s
script i . Taking account of the spread of individual thresho
potentials, one then finds the nonlinear relationship

Qe,i5
1

11e2C~Ve,i2V0! , ~1!

dQe,i

dVe,i
5

Ce2C~Ve,i2V0!

@11e2C~Ve,i2V0!#2
~2!

5CQe,i~12Qe,i !, ~3!

whereC is a positive constant and we have assumed
distribution ~2! of threshold potentials relative to the mea
valueV0 @a Gaussian distribution would be equally comp
ible with physiological measurements, yielding an er
function in place of Eq.~1!#. In Eqs. ~1! and ~2!, Qe is
measured in units of the maximum value possible~250–1000
s21 per neuron!, and potentials are measured in units of t
characteristic standard deviation of the threshold distribut
Suitable values of the constants in Eqs.~1! and ~2! are
C51.82 andV053 @14#.

Within a particular neuron, the relationship between
rate of arrival of incoming pulses,Qae or Qai , and the cor-
responding potential,Ve or Vi , is complicated. The induce
transmembrane voltage perturbation propagates along
dendrites in a way that depends on the local dendritic cap
tance and resistivity@5#. However, for the situation consid
ered here of aggregate neural masses, we adopt the emp
finding that the temporal spread and conduction delay wit
an individual neuron’s dendritic tree may be described b
simple impulse response. Specifically, Freeman@5# found
that one can write

Ve,i~r ,t !5gE
2`

t

w~ t2t8!Qae,ai~r ,t8!dt8, ~4!

wherew(u) is a non-negative weight function, with a cha
acteristic width of'10 ms and

E
0

`

w~u!du51. ~5!

A suitable choice forw(u) is

w~u!5H ab

b2a
~e2au2e2bu!, bÞa ~6!

a2ue2au, a5b ~7!

for u.0, wherea andb are positive constants. This func
tion, shown in Fig. 2, peaks atup5 ln(b/a)/(b2a) for a
Þb and atup51/a for a5b. This peak location can be
chosen to be approximately 5 ms to correspond reason
closely to physiological parameters@5,9,10#, although some
authors favor somewhat larger values witha'b'400 s21

@16#.
In general, Eq.~4! is a convolution that is difficult to

handle analytically or numerically. However, the choice
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Eq. ~6! enables Eq.~4! to be split into two ordinary differ-
ential equations via the introduction of auxiliary potentia
Ue,i andWe,i , with

Ue,i~r ,t !5E
2`

t

e2a~ t2t8!Qae,ai~r ,t8!dt8, ~8!

We,i~r ,t !5E
2`

t

e2b~ t2t8!Qae,ai~r ,t8!dt8, ~9!

Ve,i~r ,t !5g
ab

b2a
@Ue,i~r ,t !2We,i~r ,t !#. ~10!

We find

dUe,i~r ,t !

dt
5Qae,ai~r ,t !2aUe,i~r ,t !, ~11!

dWe,i~r ,t !

dt
5Qae,ai~r ,t !2bWe,i~r ,t ! ~12!

for bÞa. For a5b, one can work directly withVe,i using
the equation

S d2dt2 12a
d

dt
1a2DVe,i~r ,t !5ga2Qae,ai~r ,t !. ~13!

Equations~11! and ~12!, or Eq. ~13!, are much simpler to
treat than the general case~4!, but preserve all the essentia
physics. For applications in which only the characteris
time scale of the responsew(u) is important, one may as
sumeb@a'100 s21 and omitW.

When a neuron fires, the pulses propagate along the a
and axonal tree to provide incoming pulses at other neur
various distances away. The strength of interaction decre
as the number of synapses decreases with increasing
tance. If we assume a characteristic axonal propagation
locity v and an isotropic distribution of axons in the co
tinuum approximation, we can approximate the outwa
propagation of pulse density as a wavefe,i generated by the
sourceQe,i . We thus find

FIG. 2. Weight functionw(u) given by Eq. ~6! for a5100
s21 andb5350 s21.
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S ]2

]t2
12ge,i

]

]t
1ge,i

2 2v2¹2Dfe,i~r ,t !5ge,i
2 Qe,i~r ,t !,

~14!

wherege,i5v/r e,i and r e,i is the characteristic range of th
axons~assumed to have an approximately exponentially
creasing distribution at large ranges!. Appendix A discusses
the connection between Eq.~14! and the axonal range distr
bution and explores generalizations of this equation to an
tropic media and media in which there is more than o
characteristic axonal range. Typical values of the consta
in Eq. ~14! are r e50.08 m andr i'1024 m for humans.

The incoming potentialsQae andQai at a particular loca-
tion comprise contributions from the wave potentialsfe,i
and inputs external to the cortex. These inputs are usu
split into two classes: a uniform meannonspecificexcitation
Qns resulting from the sum total of inputs from noncortic
structures in the brain aside from those involved in a parti
lar stimulus under study, and aspecificexcitationQs due to
stimuli, which is defined here to include both noisy and c
herent components which may or may not be spatially loc
ized ~e.g., in the visual cortex in response to a visual stim
lus!. The resulting equations are

Qae~r ,t !5MeQs~r ,t !1meQns1aeefe~r ,t !2aeif i~r ,t !,
~15!

Qai~r ,t !5MiQs~r ,t !1m iQns1aiefe~r ,t !2aiif i~r ,t !.
~16!

The constantsMe andMi determine the strength of couplin
of specific inputs to excitatory neurons and inhibitory on
respectively. Likewise,me andm i represent the densities o
synapses associated with nonspecific stimuli. The parame
aee, aei , aie , andaii are the synaptic densities associat
with excitatory and inhibitory inputs to excitatory and inhib
tory neurons. Note that we have definedQns to be constant in
time and space, whileQs may vary in time and space but
defined here to have zero spatial and temporal means.

If the range of the inhibitory axons is sufficiently sho
their inhibition can be considered to be a local effect a
axonal delays can be neglected. In this case, every inhibi
pulse is immediately received locally and one can repl
f i by Qi in Eqs.~15! and ~16! and omit the inhibitory ver-
sion of Eq.~14!. This local inhibition approximation limits
the validity of the resulting equations to scales@r i' 0.1
mm, which is not problematical in practice because
finest-scale probes currently applied to the cortical surf
are arrays with separation of order 1 mm@10#, while scalp
electrodes typically have separations of 20–50 mm. Na
rally, if one wishes to explore possible long-range inhibito
interactions, this approximation can be easily relaxed.

Our model is characterized by the system of seven eq
tions ~1!, ~10!–~12!, and ~14!–~16!. Typical values of the
constants in these equations are given in Table I for the
texes of mouse, cat, and human. Also quoted are values
the equivalent radiusR0 of a spherical cortex with the sam
area as the actual convoluted one, and the linear sizeL0 of a
square cortex with the same property. The quantitiesMe and
Mi have not been measured.
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B. Comparison with Wright and Liley’s model

Wright and Liley@7,13–15# developed a model similar to
the present one. Its similarities and differences are discus
here. A similar discussion for Nunez’s linear model@11,12#
is given in Sec. IV A.

The first point of similarity between the two models
that both use the form~1! for the relationship betweenQe,i
andVe,i . Equation~4! is also the same in both models, b
the present choice forw(t) enables the convenient form
~10!–~13! to be obtained. In contrast, Wright and Lile
@7,13–15# used a less physiologically justifiable triangul
function to approximate the curve shown in Fig. 2, a
evaluated the convolution~4! by direct integration. Numeri-
cally, this led to large demands on processing and stor
~see Sec. VI!.

The main difference between the two models is in t
treatment of axonal propagation. Wright and Liley made
local approximationf i5Qi ~although they did not describ
it in these terms! and employed a Green-function formula
tion in place of Eqs.~14!–~16!. Their corresponding equa
tions for Qae andQai in terms ofQe andQi were in dis-
cretized form and involved additional parameters describ
the coupling of a given discrete region to itself. Discretiz
tion is an unnecessary complication here, so we give th
equations in the following equivalent continuum form:

Qae~r ,t !5MeQs~r ,t !1meQns2aeiQi~r ,t !

1aeeE d2r 8E dt8 G~r ,t;r 8,t8!Qe~r 8,t8!,

~17!

Qai~r ,t !5MiQs~r ,t !1m iQns2aiiQi~r ,t !

1aieE d2r 8E dt8 G~r ,t;r 8,t8!Qe~r 8,t8!,

~18!

G~r ,t;r 8,t8!5G~ ur2r 8u!d~ t2t82ur2r 8u/v !. ~19!

In these equationsfe is expressed as an integral over t
retarded Green function~19!, which corresponds to signal

TABLE I. Estimated typical values for mouse, cat, and hum
of the parameters defined in the text. Most are taken from R
@15,16#.

Parameter Mouse Cat Human

aee 0.8023 0.844 0.853
aii 0.0112 0.004 0.002
aie 0.1186 0.122 0.126
aei 0.0626 0.022 0.011
me 0.0046 0.007 0.007
m i 0.0007 0.001 0.001
r e~mm! 2 2.7 84
v ~m s21) 9 9 9
R0 ~mm! 3.8 5.1 157
L0 ~mm! 13 18 558
g 25 37 36
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that propagate at a velocityv. This integral is slow to com-
pute numerically and involves a large amount of storage~see
Sec. VI!; to date these factors have limited simulations us
Eqs. ~17! and ~18! to relatively small grids, which do no
always provide adequate resolution for the desired appl
tions. In addition, in their discrete form, they involved add
tional parameters associated with the scale of the discre
tion. One advantage is that the form of the spatial part of
Green function can be chosen at will, with Wright and Lile
using a Gaussian to approximate the decreasing syna
density at largeur2r 8u. Appendix A contains a discussion o
the relationship of this Green function to the one implicit
the present work.

The notation used in the present work is somewhat dif
ent from that used previously by Wright and Liley@7,13–
15#. Changes have been made partly because some of
parameters are redundant in the present formulation,
partly to conform more closely with conventional usage
physics and mathematics. The relationships are given
Table II.

III. STEADY STATE

Understanding of the dynamics of our model begins
determining the uniform, steady-state behavior. Evalua
the integral in Eq.~4! for this special case and setting a
derivatives to zero in Eqs.~14!–~16! yields

Ve,i5gQae,ai , ~20!

fe,i5Qe,i , ~21!

Qae5meQns1aeefe2aeif i , ~22!

Qai5m iQns1aiefe2aiif i , ~23!

where all quantities have spatially uniform steady-state v
ues. Equation~21! can be used to eliminatefe,i from Eqs.
~22! and ~23!. Then Eqs.~20!, ~22!, and ~23! are used to
elimateVe,i from Eq.~1!, in favor ofQe,i . These steps yield

exp@CV02gC~meQns1aeeQe2aeiQi !#5
1

Qe
21,

~24!

TABLE II. Relationship between symbols for quantities us
here and those used by Wright and Liley in previous work. Note
reversal of the ordering of the mixed subscriptsei and ie in the
present work relative to Wright and Liley’s notation.

Symbol used here Symbol used by Wright and Liley

aee aee1bee

aii b i i

aie aei1bei

aei b ie

me mee

m i mei

Me Mee

Mi Mei
g

a-

a-
e

tic

r-

eir
nd

in

y
g

l-

exp@CV02gC~m iQns1aieQe2aiiQi !#5
1

Qi
21. ~25!

Equation~24! can be used to eliminateQi from Eq. ~25!
to give a single, rather cumbersome~but numerically
straightforward!, equation for the steady-state value ofQe ,
whence the other steady-state quantities can be determ
using Eqs.~20!–~24!. Rather than treat this equation analy
cally here, we approximate Eqs.~24! and ~25! and compare
our results with numerical solutions of the exact equation

Noting from Table I that physiological measurements i
ply aei!aee, Eq. ~24! implies

Qeexp@CV02gC~meQns1aeeQe!#'12Qe . ~26!

The left side of Eq.~26! is non-negative, with a single maxi
mum wheregCaeeQe51; at largeQe it decreases exponen
tially fast. Figure 3 shows graphically that Eq.~26! can have
either one solution or three, depending mainly on the val
of V0 andQns. One solution, always present, is located ve
close toQe51, with

Qe'12exp@CV02gC~meQns1aee2aei!#, ~27!

Qi'12exp@CV02gC~m iQns1aie2aii !#. ~28!

The other two solutions, which only exist for small values
Qns, are located at small values ofQe . If we neglectQe on
the right of Eq.~26!, these solutions are

Qe5~gCaee!
21ln$B21ln@B21ln~••• !#%, ~29!

Qe5~gCaee!
21B exp$Bexp@B exp~••• !#%, ~30!

B5gCaeeexp~gCmeQns2CV0!. ~31!

When, for purposes of numerical evaluation, Eqs.~29! and
~30! are recast in an iterative form, they become, resp
tively,

xn115 ln~xn /B!, ~32!

xn115B exp~xn!, ~33!

FIG. 3. Graphical solution of Eq.~26!. The left and right sides
of Eq. ~26! are shown as the curve and straight line, respectiv
for a particular case. There are three solutions if the peak of
curve lies above the straight line, as shown, but only one otherw
~located very nearQe51).
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respectively, where in both casesQe is related to the limit
x` by

Qe5~gCaee!
21x` . ~34!

Equation~32! is found to converge to the larger of the tw
solutions, while Eq.~33! converges to the smaller solution
The corresponding values ofQi are given by

Qi5Qeexp@2gC~me2m i !Qns2gC~aee2aie!Qe#.
~35!

Note that whenB5e21, thenQe5(gCaee)
21 according to

both Eqs.~29! and~30!. The solutions~29! and~30! are only
valid for B<e21, which places an upper bound onQns in the
low-Qe steady state:

Qns,@CV0212 ln~gCaee!#/~gCme!. ~36!

For non-negativeQns this criterion also implies

g,
eCV021

Caee
, ~37!

for low-Qe steady-state solutions to exist. The solutio
~27!–~35! can be substituted into Eqs.~20!–~23! to obtain
steady-state values of other quantities.

Figure 4 compares the approximate solutions~29! and
~30! with the numerical solution of Eqs.~24! and~25! for the
human parameters from Table I. Figure 5 shows similar
sults for the fixed point given by Eqs.~27! and ~28!. In all

FIG. 4. Steady-state values vsQns for the human parameter
from Table I. The approximate solutions~29!, ~30!, and ~32! are
shown as dashed curves, while exact solutions of Eqs.~24! and~25!
are drawn solid. The square symbols show steady-state value
tained in the fully nonlinear simulations discussed in Sec. VI B.~a!
Qe . ~b! Qi .
s

-

cases the agreement is seen to be good. The approximat
least satisfactory near the rightmost point of the locus
solutions in Fig. 4. For example, Eq.~36! gives
Qns,0.9520 for the existence of low-Qe solutions, whereas
the full equations yieldQns,1.0000. The small errors
present in Eqs.~29!–~35!, and demonstrated in Figs. 4 and
arise from the neglect ofQe on the right side of Eq.~26!.
This neglect is justified on experimental grounds where i
found that in the normal cortex typical rates of less than
pulses per second per neuron are observed, compared w
maximum possible rate of 250–1000 s21 @4,17#. The square
symbols in Figs. 4 and 5 are discussed in Sec. VI B.

In summary, we have found three fixed points of Eqs.~24!
and~25!. One, given by Eq.~27!, corresponds to a seizure i
which all neurons are firing at near their maximum possi
rate. The next two, given by Eqs.~29! and~30!, involve low
firing rates of all neurons, similar to what is seen in t
normal state of the cortex. We discuss these steady s
further in Sec. IV B, once their stability characteristics ha
been clarified.

IV. WAVE PROPERTIES: INFINITE MEDIUM

In this section we consider the properties of small pert
bations about the fixed points found in Sec. III. This yiel
the dispersion relations and growth or damping rates of
waves, and the linear stability boundary of the system.
do not consider nonlinear wave propagation or instabilitie

ob-

FIG. 5. Steady-state values vsQns for the human parameter
from Table I. The approximate solutions~27! and~28! are shown as
dashed curves, while exact solutions of~24! and ~25! are drawn
solid. The square symbols show steady-state values ofQi obtained
in the fully nonlinear simulations described in Sec. VI B.~However,
these simulations lacked sufficient precision to give useful stea
state values for 12Qe .) ~a! 12Qe . ~b! Qi .
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A. Wave dispersion

To determine the linear wave properties of our model,
must first linearize Eq.~1!, writing

Qe,i5Qe,i
~0!1re,i@Ve,i2Ve,i

~0!#, ~38!

whereQe,i
(0) andVe,i

(0) are the relevant steady-state values fro
Sec. III andre,i5dQe,i /dVe,i at this point. Fourier trans
forming Eqs.~38! and ~10!–~16!, and deleting the compo
nents (k,v)5(0,0) ~which were treated in Sec. III! then
yields

Qe,i5re,iVe,i , ~39!

Ve,i5gLQae,ai , ~40!

L5
ab

~a2 iv!~b2 iv!
, ~41!

De,ife,i5ge,i
2 Qe,i , ~42!

De,i5~ge,i2 iv!21k2v2, ~43!

Qae5MeQs1aeefe2aeif i , ~44!

Qai5MiQs1aiefe2aiif i , ~45!

where the argumentsk andv are implicit. It is worth noting
from Eqs. ~40! and ~41! that uLu decreases monotonicall
with v and, hence, the dendrites act as low-pass filters
tend to remove frequenciesv.min$a,b%.

We can writeQe,i in terms ofQae,ai using Eqs.~39! and
~40!. Equations~44! and ~45! can then be used to writ
Qe,i in terms offe,i . If the results are substituted into E
~43!, we find

~De2Feaee!fe1Feaeif i5FeMeQs , ~46!

~Di1Fiaii !f i2Fiaiefe5FiM iQs , ~47!

Fe,i5ge,i
2 re,igL. ~48!

A dispersion equation forfe alone results from elimina
tion of f i from Eqs.~46! and~47!. Instead of following this
route, we make the local-inhibition approximationf i5Qi
based on the short range of the inhibitory fibers. As m
tioned earlier, this approximation limits us to consideri
waves with wavelengths longer than a few tenths of a m
We then find

~De2Feaee!fe5Fe~MeQs2aeiQi !. ~49!

Elimination ofQi in favor of fe , as before, then yields

Qi5
Fi

g i
21Fiaii

~MiQs1aiefe!. ~50!

After substitution of Eq.~50! into Eq. ~49! we then find the
wave equation

~De2Feaee!fe5FeMeQs , ~51!
e

at

-

.

where some small terms have been neglected subject to
assumption thatMi@Me is not satisfied. The linear respons
of the cortex to a specific signalQs is given by Eq.~51! in
Fourier space. One significant point is that all the inhibito
coefficients have disappeared, having been discarded
small quantities in going from Eqs.~49! and~50! to Eq.~51!.
Hence it is the excitatory component that determines
long-range behavior.

For freely propagating waves, Eq.~51! with Qs50 gives
the dispersion equation

~a2 iv!~b2 iv!De2abge
2G50. ~52!

The quantityG, given by

G5regaee, ~53!

is the net gain in the loop in which a low-frequency, lowk
perturbation of magnitudee in fe gives rise to perturbations
aeee in Qae , gaeee in Ve , regaeee in Qe , and
regaeee5Ge in fe . Equivalently,G is the mean number o
pulses stimulated by each pulse emitted. Equation~52! can
be approximated as

~a2 iv!De2age
2G50, ~54!

De2ge
2G50, ~55!

for b@a,v and forb,a@v, respectively. For typical physi
ological parameters@10,18# one has a5100 s21 and
b5350 s21, and the approximations~54! and ~55! are ap-
plicable for frequenciesf5v/2p given by f!55 Hz, and
f!15 Hz, respectively. Only the first of these is appropria
to study the full range of normally recognized human EE
rhythms, although Eq.~55! may be semiquantitatively usefu
In the single-parameter casea5b'200 s21, Eq. ~54! does
not apply but Eq.~55! is valid providedf!30 Hz.

Equations~52! and~54! incorporate dendritic lags to gen
eralize the corresponding linear wave equation obtained
Nunez@11,12#, which omitted these lags and was of the for
~55!. Nunez’s equation applies in the limit in which thes
lags are negligible. However, the discussion in the preced
paragraph implies that this is at best semiquantitatively c
rect for the alpha rhythm (f'10 Hz! and is an increasingly
poor approximation at higher frequencies. Examples of
solutions of Eqs.~52!–~55! are given in Sec. IV C, after we
have discussed the question of stability.

B. Linear stability

Equations ~52!, ~54!, and ~55! are polynomials in
u52 iv with purely real coefficients. Hence solutions fo
u are either purely real or occur in complex-conjugate pa
Growing solutions correspond to Imv5Reu.0. From Eq.
~55! we find

v52 ige6 i ~ge
2G2k2v2!1/2. ~56!

This result immediately implies that an instability occurs f

G.11k2v2/ge
2511k2r e

2 , ~57!
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with equality in Eq.~57! defining the instability boundary
The least stable perturbations are atk50. At large k, the
waves are damped, propagating modes, w
v'6kv2 ige . In the case of the quartic equation~52! at
largek, De can be either large or small. If it is large, we fin
two purely damped modes withv'2 ia,2 ib. If it is large,
there are two propagating modes that approach the higk
solutions of Eq.~56!. Since there can be only four solution
to a quartic, these four modes are the only ones. Sim
reasoning can also be applied to the cubic equation~54!,
yielding the same modes except for the one atv'2 ib.

The quartic and cubic equations,~52! and ~54!, can be
solved analytically in the general case, but the solutions
too unwieldy to be useful. Here we obtain the stabil
boundary for these equations by considering the special
where the root~s! with the largest Reu are marginally stable
with Reu50. The stability boundary for the cubic equatio
can be obtained from that of the quartic in the limitb→`, so
we consider only Eq.~52! here.

There are two ways in which instability can first set in a
from which the instability boundary can be calculated: eith
a real root can reach the pointu50 or a pair of complex-
conjugate roots can reach the point where they are pu
imaginary. The latter case breaks into two subcases in w
the other two roots have negative real parts and are e
purely real or are complex conjugates. In the case of a
root being the first to reach the instability boundary, t
boundary corresponds tou50. Equation~52! immediately
yields the criterion~57! for instability. The dendritic param
etersa and b do not enter this criterion because the fr
quency is zero at the point of marginal stability, when
L51 in Eq. ~41!. In Appendix B we demonstrate that th
cases in which a pair of complex-conjugate roots are the
to become unstable have no consistent solution forG.0.
Hence Eq.~57! is the instability criterion for Eqs.~52!, ~54!,
and ~55! in all circumstances.

For k50, the criterion~57! can be used to determine th
stability of the fixed points found in Sec. III. Using Eqs.~3!
and ~53!, we find stability only for

Qe~12Qe!,~gCaee!
21. ~58!

This criterion immediately implies that the high-Qe root ~27!
is stable. By imposing the same approximation used in
riving ~27!, ~29!, and~30!, namely thatQe!1, Eq. ~58! be-
comesQe,(gCaee)

21. As noted above, this value ofQe is
the one at which the solutions~29! and~30! coincide, and is
located at the rightmost point in Fig. 4~a!. Consequently, this
inequality identifies thelower of the two solutions, Eq.~30!,
as being stable, while Eq.~29! is unstable. Thus there ar
two basins of attraction in a linear approximation, cor
sponding to the two stable roots.

~i! A ‘‘normal’’ low-activity state, corresponding to Eq
~30!, in which all neurons fire at rates far below their phy
ological limits. This state corresponds to the stable one fo
previously in numerical calculations@7,13–15# and to nor-
mal levels of cortical activity in nature.

~ii ! A saturated high-activity state, corresponding to E
~27!, where physiologically maximal firing rates are a
proached during a seizure. This state was also seen p
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ously in numerical work@7,14# and presumably correspond
to a grand mal seizure in nature.

Numerical calculations show empirically that nonline
systems initialized withQe below the upper of the two low-
Qe solutions tend to converge to the lower one, while s
tems initialized with higherQe converge to the solution~27!.
Thus Eq.~29! approximately defines the boundary betwe
the basins of attraction even in the nonlinear case.

It has been remarked previously on many occasions
self-organizing systems such as the brain must by their v
nature operate ‘‘on the border of instability’’ or ‘‘on the edg
of chaos’’ @19#. Otherwise, complex behavior would not b
possible because the system would either be unstabl
would settle into a relatively quiescent state~or, at least, one
of low complexity!. We can measure the nearness of t
cortex to marginal stability by taking the ratio of the dam
ing rate atk50 in Eq. ~57! to the corresponding rate fo
G50, since it is the cortical gain parameterG that controls
stability. The resulting parameter 12G1/2 is approximately
0.4 for the normal state of the mouse, cat, and human for
parameters in Table I, even forQns50. Thus, even without
stimulation, the cortex is more than halfway to instability f
the parameter values adopted here. In the more typical
in whichQns is sufficiently large thatQe50.015, the stability
parameter is only 0.07, implying that the cortex is very ne
to instability under typical conditions.

C. Numerical solutions of dispersion relations

The dispersion relations~52!, ~54!, and~55! are straight-
forward to solve numerically. Several sample solutions
examined in this section to illustrate the main features
stable and unstable waves, and the similarities and dif
ences between the waves predicted by the three equatio

Figure 6 shows the real and imaginary parts ofv for the
various modes predicted by Eqs.~52!, ~54!, and~55!, which
predict four, three, and two modes, respectively. For the
rameters given in the caption, the system is predicted to
stable for allk and, indeed, Imv,0 throughout. The solu-
tions labeled61 havev'2 ige6kv at high k, in accord
with the discussion in Sec. IV B. For these solutions, t
group velocityvg5]Rev/]k approaches6v ask increases,
implying that axonal propagation chiefly determines t
propagation of electrocortical waves in this limit. This d
rived velocity is in accord with cortical and scalp measu
ments @2,20,21#. The solutions labeled 0L and 0H have
v'2 ia andv'2 ib, respectively, at largek, also in ac-
cord with Sec. IV B. The three least damped modes are v
similar in both the quartic and cubic cases, implying that
cubic approximation~54! is adequate under these circum
stances. Important differences between the quadratic
and the other two are that the least damped mode is on
the pair61 in the former case, and the 0L mode in the
other, and that the quadratic case has no propagating m
for k2v2,ge

2G, in agreement with Eq.~56!. Interestingly,
the 61 and 0H solutions become less damped at highk,
while the 0L solution becomes more heavily damped.

Figure 7 shows a case where the parameters correspo
an unstable solution to the steady-state equations atk50.
The mode structure is the same as in Fig. 6, except that t
are growing solutions where Eq.~57! is satisfied. This
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boundary is the same for quadratic, cubic, and quartic eq
tions, as the discussion in Appendix B implies. The unsta
wave is in the61 branches in the quadratic case, and in
0L branch in the other two cases. This anomaly in the q
dratic case is due to the two solutions of Eq.~55! being the
only ones available, which forces them to change their ch
acter from propagating to nonpropagating ask decreases
whereas higher-degree dispersion relations have a diffe
topology.

V. WAVE PROPERTIES: FINITE MEDIUM

The previous two sections have explored the propertie
our model for an infinite medium. Since the cortex is fin
we now examine the effects of imposing boundary con
tions on our equations. Two cases are considered here:
odic boundary conditions on a square cortex~i.e., a toroidal
topology, but not geometry!, and a spherical cortex. We d
not consider the effects of cortical convolutions or inhom
geneities in this paper, except to choose the size of
square or sphere so its area equals that of the actual, co
luted cortex seen in nature. Both convolutions~or other re-

FIG. 6. Dispersion of the modes predicted by Eqs.~52!, ~54!,
and ~55!. The left column shows Rev, while the right shows
Imv. The four roots predicted by Eq.~52! are shown in the top row
of the figure, the three roots predicted by Eq.~54! are shown in the
middle row, and the two roots predicted by Eq.~55! are shown in
the bottom row. The parameters of the system are the human
rameters from Table I withG50.57, corresponding to the stab
fixed point atQns50.7. Propagating modes have either positive
negative Rev and are labeled11 and21. The two nonpropagating
modes are labeled OL and OH as they are distinguished only
their degree of damping, which, reflecting the values ofa andb,
may be low or high.~a! Rev, quartic dispersion relation.~b!
Imv, quartic dispersion relation.~c! Rev, cubic dispersion relation
~d! Imv, cubic dispersion relation.~e! Rev, quadratic dispersion
relation.~f! Imv, quadratic dispersion relation.
a-
le
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nt
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ur
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ductions in symmetry! and inhomogeneities will lead to
splitting of degenerate eigenfrequencies found below, a p
noted by Nunez in the context of his linearized analy
@11,12#.

A. Cortex with periodic boundary conditions

If we impose periodic boundary conditions on a rectang
lar cortex with edges of lengthLx andLy ~both of which we
will denote byL0 when they are equal!, the wave vectork is
restricted to values (2pnx /Lx,2pny /Ly) where nx and ny
are integers. This corresponds to selecting out a serie
discrete eigenmodes from dispersion curves such as tho
Figs. 6 and 7 as having the only combinations ofv and k
allowed in the finite cortex. Note that modes with equal a
opposite values ofnx and/orny are always degenerate.

One important point to note is that, fo
1,G,11(2pr e /max$Lx ,Ly%)

2, only thek50 mode is un-
stable. Since 2pr e*L0 for the parameters in Table I, thi
can be a substantial range of parameter space. Thus, w
considering the global linear stability of the brain, the pro
lem can often be reduced to that of a single mode by vir
of the discrete nature of the eigenspectrum.

Table III lists Rev and Imv for solutions of Eq.~52! with
human parameters from Table I,G50.57, and periodic

a-

r

y

FIG. 7. Dispersion of the modes predicted by Eqs.~52!, ~54!,
and ~55!. The left column shows Rev, while the right shows
Imv. The four roots predicted by Eq.~52! are shown in the top row
of the figure, the three roots predicted by~54! are shown in the
middle row, and the 2 roots predicted by Eq.~55! are shown in the
bottom row. The parameters of the system are the human pa
eters from Table I withG51.602, corresponding to the unstab
fixed point atQns50.7. Modes are labeled as in Fig. 6.~a! Rev,
quartic dispersion relation.~b! Imv, quartic dispersion relation.~c!
Rev, cubic dispersion relation.~d! Imv, cubic dispersion relation
~e! Rev, quadratic dispersion relation.~f! Imv, quadratic dispersion
relation.
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boundary conditions for smallnx andny in order of increas-
ing Rev. Purely damped, nonpropagating modes are
listed. The tabulated values all lie on the branch labe
11 in Figs. 6~a! and 6~b!; the parameters of the branc
labeled21 are obtained by reversing the sign of Rev. Three
important points to note are that~i! the imaginary part ofv
gives the characteristic width of each mode in frequen
since these widths are larger than the separation betw
modes for the parameters of Table III, one would not exp
to see well defined resonances when these modes are ex
by white noise, for example,~ii ! the prominence of the reso
nances is reduced when, as in the present situation, the
length of the damping,r e , is less that the circumference o
the system, and~iii ! the minimum frequency of a propaga
ing mode is;15 Hz, which lies in the typical physiologica
range.

B. Spherical cortex

If we Fourier transform Eq.~52! in space, we find the
form

v2¹2fe~r !5@~ge2 iv!22Lge
2G#fe~r !, ~59!

where the temporal variation;exp(2ivt) has been separate
off. If we consider the spatial component of any wave eq
tion on a spherical cortex, the eigenfunctions satisfy

2¹2fe5
l ~ l11!

R0
2 fe , ~60!

wherel is the principal quantum number of the eigenfuncti
in question, andR0 is the radius of the sphere. Solutions a
of the formfe5eimwPl

m(cosu) wherePl
m is an associated

Legendre function@22#,m is the azimuthal quantum numbe
andu andw are standard spherical coordinates. As a resu

TABLE III. Lowest eigenfrequencies for periodic bounda
conditions on a square cortex for the human parameters from T
I. In addition, a5100 s21, b5350 s21, Qns50.7, and
G5regaee50.57. The real and imaginary parts ofv are given as a
function of the quantum numbersnx and ny for modes that have
positive real frequency, in order of increasing real frequen
Purely damped, nonpropagating modes are omitted. Only cases
ny>nx>0 are listed because the modes are degenerate under
of the replacementsnx→2nx , ny→2ny , andnx↔ny .

nx ny k (m21) Rev Imv

0 0 0.0 93.1 2142.7
0 1 11.3 124.4 2128.7
1 1 15.9 155.6 2120.3
0 2 22.5 208.8 2113.4
1 2 25.2 231.4 2111.9
2 2 31.8 289.5 2109.8
0 3 33.8 306.6 2109.4
1 3 35.6 322.7 2109.1
2 3 40.6 367.1 2108.6
0 4 45.0 406.6 2108.3
1 4 46.4 419.0 2108.2
3 3 47.8 431.1 2108.1
t
d

;
en
ct
ited

ale

-

f

this constraint, Eq.~59! leads to a dispersion relation ver
like Eq. ~52! except that the quantityk2 is replaced by
l ( l11)/R0

2. The azimuthal quantum numberm does not ap-
pear in the dispersion relation, so all 2l11 modes for fixed
l are degenerate for a precisely spherical cortex.

Table IV lists Rev and Imv for solutions of Eq.~52! with
human parameters from Table I,G50.57, and spherica
boundary conditions. Values for smalll are given in order of
increasing Rev and purely damped, nonpropagating mod
are not listed. The eigenfrequencies increase approxima
as Al ( l11) at large l and are in the range observed f
cortical frequencies. As in the periodic cortex, the mo
widths exceed their separations, so we do not expect nois
excite clear resonances for these parameters.

VI. NUMERICAL RESULTS

In order to study the dynamics of our full nonlinea
model, Eqs~1!, ~10!–~12!, and ~14!–~16! have been imple-
mented numerically. This section outlines the methods u
and numerical confirmations of the key analytic results o
tained in earlier sections.

A. Methods

Of our seven equations, implementation of Eqs.~1!, ~10!,
~15!, and ~16! is trivial, since they involve no derivatives
Likewise, Eqs.~11! and ~12! present no difficulties becaus
they are ordinary differential equations int.

In solving the wave equation~14!, we make the local-
inhibition approximationf i5Qi , which removes the need
to follow f i via a wave equation, but restricts us to wav
lengths@0.1 mm as discussed in Sec. II A. Initially, w
implement Eq.~14! on a square grid with periodic boundar
conditions, corresponding to a cortex with toroidal topolog
By introducing the auxiliary fieldc5e2getfe , Eq. ~14! is
transformed to the form of the standard wave equation:

F ]2

]t2
2v2¹2Gc~r ,t !5ge

2e2getQe~r ,t !. ~61!

This enables us to use standard routines to stepc forward in
time, although we actually storefe at each step to avoid

le

.
ith
ach

TABLE IV. Lowest eigenfrequencies for periodic bounda
conditions on a spherical cortex for the human parameters f
Table I withQns50.7,a5100 s21, b5350 s21, andG50.57. The
real and imaginary parts ofv are given as a function of the quan
tum numberl for modes that have positive real frequency. Pure
damped, nonpropagating modes are omitted. The eigenfreque
are independent of the quantum numberm.

l Rev (s21) Imv (s21!

0 93.1 2142.7
1 113.0 2133.2
2 153.2 2120.8
3 204.9 2113.8
4 260.1 2110.6
5 316.3 2109.2
6 373.1 2108.5
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underflow at larget due to the exponential factor in Eq.~61!.
We solve Eq.~61! in coordinate space, rather than Four
space, so as to enable the most straightforward generaliz
to more complicated geometries in future, where Fou
methods are not applicable~e.g., on a convoluted cortex!.
Our approach will also allow inhomogeneities and anisot
pies to be relatively easily incorporated in future.

On anN3N grid, the runtime of our code scales asN2

per time step. This represents a major improvement on
Green-function method used in previous nonlinear calcu
tions @7,13–15#, where the runtime required to evaluate t
Green functions scaled asN4 per time step. Direct compari
sons of the two methods verify a speedup of orderN2, which
enables us to attain adequate whole-cortex resolution. S
age is also dramatically reduced through the use of E
~10!–~12! and~14!, which are time local and require storag
of only a few configurations of the system needed by
time-stepping routines~storage;N2). In contrast, previous
methods stored of order 100 previous configurations of
system to treat the dendritic lags~storage;100N2) and of
orderN previous configurations to evaluate the Green fu
tion ~storage;N3).

B. Steady-state solutions

In Sec. III approximate steady-state solutions were
rived, and in Figs. 4 and 5 a comparison was made with th
exact solutions forQe andQi . With the numerical imple-
mentation of the dynamical equations, as described abov
is possible to determine the accuracy of the analytic appr
mations made previously and of the resulting fixed-point
timates. This was done for several different values ofQns,
including values for which there are three possible fix
points, and larger values ofQns for which there is just one
fixed point. We chose the grid ratio to b
p5vDt/Dx50.1. A grid of 1003100 was employed, al
though the results are not sensitive to grid size. There is
important dependence on initial conditions though. T
stable states both have their own basins of attraction cha
terized by low and by high firing rates, and so we s
Qe5Qi50 initially for one series of simulations, an
Qe5Qi51 for another. The other variables were initialize
according to Eqs.~20!–~23!. The results are shown as squa
symbols in Figs. 4 and 5~showing low and high firing-rate
steady-state solutions, respectively!. As expected, the forme
set of simulations converged to the stable, lowest firing-r
fixed point, except forQns>1.000, in which case no suc
solution exists and they converged to the stable, high firi
rate fixed point. The latter series, withQe andQi initialized
to unity, always converged to the high firing-rate fixed poi

From the discussion of linear stability in Sec. IV B, w
expect the upper branch of the curves in Fig. 4 to be
stable. This expectation was supported by a further se
simulations in whichQnswas arbitarily set to 0.6 andQe was
initialized to values in the range 0.000–0.050 at intervals
0.005, to cover the range defined by the two low-Qe steady-
state solutions forQns50.6, namely, Qe50.009 and
Qe50.032. For completeness, initial value
Qe50.100–1.000 at intervals of 0.100 were also used. W
Qi initialized to zero, it was found that simulations havin
Qe initialized to 0.000–0.030 converged to the lowest of t
r
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steady-state solutions, and the remainder to theQe.1 solu-
tion. WithQi initialized to unity, almost the same result wa
obtained: simulations havingQe initialized to 0.000–0.035
converged to the lowest of the steady-state solutions, and
remainder to theQe.1 solution.

This series of simulations supports our theoretical line
stability result that the upper branch of solutions in Fig. 4
unstable, because convergence is only ever to the other
solutions. Indeed, initializing all variables as nearly as p
sible to those of an upper branch fixed point resulted in
stable behavior: after initial slow evolution, it eventual
converged to one of the other two fixed points.

In addition to the above, we can infer the approxima
form of the basin of attraction of the stable solutions. Alte
ing the initialization ofQi from zero to unity had only a
small effect on the ultimate steady state. Whether the ini
value ofQe is larger or smaller than its value at the unstab
fixed point is therefore the principal determinant of ultima
state of the system; the initial value ofQi can affect that
choice only whenQe is close to that of the unstable fixe
point.

With regard to the reproducibility of the fixed points u
ing the full nonlinear simulation, errors in the final values
Qe andQi were of the order of 1025 for p5vDt/Dx50.1.
The accuracy of simulations worsens for larger values ofp,
and whenp>1/A2 ~related to the Courant condition for th
two-dimensional explicit difference method! the numerical
solutions become unstable. Much smaller values ofp lead to
cumulative rounding errors unless more sophisticated tim
stepping routines are used. The choice ofp also affects the
accuracy of convergence, as do the initial values of the v
ables. Variation of the initial value ofQe gave rise to mar-
ginally different values of the final steady-state variabl
These differences, also of order 1025, provide another esti-
mate of the accuracy of the calculations. Of course s
small errors are negligible in applications because cere
parameters are known only approximately and measurem
cannot distinguish such small differences in firing rates.

FIG. 8. The distribution ofQe at one time in a simulation on a
2563256 grid. The system was driven by a 500 s21 sinusoidal
signalQs applied to a 636 central area.Dx5Dy52.18 mm and
Dt50.05 ms. In the figurex andy are measured in units ofDx and
Dy, respectively.
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C. Wave propagation

The existence of roots of the dispersion relation hav
nonzero real parts means that the system supports trav
waves. This is demonstrated in Fig. 8, in which a 2563256
grid has its central 636 points driven by a sinusoidal signa
with v5500 s21. The amplitude of the driving signal wa
0.01 andQns was set to 0.7. With reference to Fig. 4~a!, this
was sufficient to maintain activities~a! within the basin of
attraction of the nonseizure state, and~b! within physiologi-
cal limits. A concentric distribution of traveling waves
evident, and the scale length of damping (r e583.7 mm
540 grid units! may be appreciated. This degree of damp
does not allow accurate estimation of the wavelength, but
expectation, from the dispersion relation~52!, of l552 grid
units is at least approximately borne out.

D. Power spectra

As another demonstration of the dynamical properties
the model, we consider the square cortex with perio
boundary conditions discussed in Sec. V A, and in Table
Figure 9 is the result of driving this system along one colu
(x50, y50219Dy, Dy527.9 mm! with spatially uniform
white noise, and recording the values ofQe at a site distant
from the sites of stimulation. A total of 100 periods of 2.0
s were recorded, transformed to give amplitude spectra,
averaged. The nonspecific excitationQnswas set equal to 0.7
to make this figure match the eigenfrequencies listed
Table III. With all other system parameters as in Table
~human! the dashed line in Fig. 9 was obtained. This sho
no apparent resonance because for the eigenfrequencies
clearly visible the damping lengthr e must be*L0. To dem-
onstrate resonance,r e was set to the somewhat unrealis
figure of 1.5L0, and a resonance peak was then obtain
~Fig. 9, solid line!. The location of the peak is also consiste
with the dispersion relation~52!: with this revised value of
r e , the nx5ny50 mode becomes purely damped and
first oscillatory mode is then thenx51,ny50 ~or
nx50,ny51) mode having an expected frequency of 1

FIG. 9. Spectral amplitudes for the case of periodic bound
conditions. A grid of 20320 points was used, with
Dx5Dy527.9 mm, driven by spatially coherent white noiseQs

along the column defined byx50, and the resulting activityQe

measured at a pointx510Dx, y510Dy for a total of 10032.048 s.
Spectral amplitudes are normalized to the spectrum of the in
signal.Qns50.7,a5100 s21, andb5350 s21. The dashed line is
for r e50.15L0, ge5108 s21, and the solid line is forr e51.50L0,
ge510.8 s21. All other parameters were as in Table III.
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s21. ~The next mode is at 143 s21, but there is so little
signal at frequencies*120 s21 as to be beyond the precisio
of the analysis.!

A further point demonstrated by this example is the re
tionship between damping and the width of the resona
peak. Increasingr e had the effect of reducingge5v/r e to
10.8 s21, and this is reflected in the observed resonance p
width.

The main implications of this example are~i! very low
values ofge5v/r e are needed to see resonances, as
cussed in Sec. V A, and~ii ! experimentally Imv can be es-
timated from the width of the alpha resonance. The first po
sheds some doubt on Nunez’s global resonance picture,
lessge is smaller than previously thought.

VII. SUMMARY AND DISCUSSION

Motivated by the need for a formulation of cerebral act
ity that is analytically and numerically tractable, we ha
formulated a set of nonlinear continuum equations that
isfies these requirements. These equations embody the
linear response~on average! of neurons to imposed poten
tials, the presence of excitatory and inhibitory populatio
and axonal and dendritic lags, and provide the framework
a wide variety of analytic and numerical calculations.

Analytically, we have used our model to study the stea
state behavior of the cortex, and its stability, as well as lin
waves propagating in bounded and unbounded models o
cortex. Numerically, the speed at which our nonlinear syst
can be simulated is of the same order as that for the co
sponding linear one, thereby enabling adequate whole-b
resolution to be obtained in a 2D nonlinear model. The m
results of the present study are summarized next.

~i! Dendritic lags have been treated in a way that is b
simpler and closer to physiological measurements than
previous work. This enables analytic treatment and redu
numerical runtime and storage requirements.

~ii ! The propagation of axonal signals, including axon
delays, has been formulated in terms of a wave equat
This bears some similarities to previous wave equations,
does not assume that the system as a whole is linear.
wave-equation formulation is analytically tractable and d
matically faster to treat numerically than its Green-functi
predecessor. Numerical storage requirements are also
lower.

~iii ! The results emphasize the importance of both d
dritic and axonal delays in determining the dispersion re
tions of cortical waves and, hence, global eigenfunctions

~iv! The criteria for ignoring the finite range of inhibitor
fibers have been made more explicit.

~v! An analytic fixed-point analysis has been done to d
termine the steady states of the system. Three fixed po
have been found, one of which is unstable. Of the other t
one represents a ‘‘normal’’ state of low activity, while th
other represents a saturated ‘‘seizure’’ state in which activ
is near its maximum.

~vi! Dispersion equations have been derived for sm
amplitude linear waves. These equations incorporate b
axonal propagation and dendritic lags. The limit in whi
dendritic lags can be neglected is elucidated and it is sho
that an earlier equation@12# is reproduced in this limit.
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~vii ! A stability boundary has been described, beyo
which a seizure will set in. Under normal conditions t
cortex is not far from this boundary, consistent with the vie
that complex, self-organizing systems must be near ‘‘
edge of stability’’ to function properly. This emphasizes t
prospect for future work to analyze internal controls of ce
bral dynamics, such as regulation of local and global inh
tion, which may exploit this near-marginally stable behav
to produce much richer dynamics@7#.

~viii ! The effects of boundary conditions have been st
ied for a square cortex with periodic boundary conditio
and for a spherical cortex, yielding discrete eigenfrequen
in the relevant physiological ranges.

~ix! Numerical solutions of our model equations ha
confirmed the existence of one steady-state solution wi
high firing rate, and two steady-state solutions with a l
firing rate. Of the latter pair, only the lower is stable, a
both requireQns to be less than a limiting value given ap
proximately by Eq.~36!. If Qns is large enough the system
will saturate. The system will also saturate if the state
moved to some point withQe greater than that of the un
stable fixed point.

~x! Numerical simulations have demonstrated the ex
tence of traveling waves.

~xi! Numerical simulations have confirmed theoretical
sults that sharp resonances are impossible unless the d
ing parameterge is substantially smaller than previous
supposed. This casts some doubt on previous sugges
that the alpha rhythm is a global resonance of the cortex
however, this rhythmis a global resonance, the imagina
part of its frequency can be estimated experimentally fr
its width.
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APPENDIX A: GREEN FUNCTIONS
AND GENERALIZED WAVE EQUATIONS

This appendix discusses the connection between the w
equation~14!, its Green function, and the corresponding a
onal range distribution. It then compares the Green func
with that used by Wright and Liley@13,14#, and explains
how Eq.~14! can be generalized to a broader class of me

1. Green functions

The solution of Eq.~14! can be written in terms of a
Green functionG as

f~r ,t !5E d2r 8E dt8 G~r ,t;r 8,t8!Q~r 8,t8!, ~A1!

where subscripts have been omitted for simplicity. In an i
tropic medium,G depends only on the distanceR5ur2r 8u
and the time differencet5t2t8. The Fourier transform of
d
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the Green function can be immediately evaluated from
Fourier transforms of Eqs.~14! and ~A1!, giving

G~k,v!5
g2

~g2 iv!21k2v2
. ~A2!

The inverse Fourier transform of Eq.~A2! then yields

G~R,t!5E d2k

~2p!2
E dv

2p
eik•R2 ivtG~k,v! ~A3!

5
g2e2gt

4p2v E
0

`

dk sin~kvt!E
0

2p

du eikR cosu ~A4!

5
g2e2gt

2pv E
0

`

dk sin~kvt!J0~kR! ~A5!

5
g2e2gt

2pv
1

Av2t22R2
Q~vt2R!, ~A6!

where polar coordinates,R andu, are used to do the integra
over k, Q is a unit step function, and only the retarded p
of the propagator has been retained to avoid unphysical
lutions that propagate backward in time. Note that

E d2RE dt G~R,t!5E d2R
g2

2pv2
K0~Rg/v ! ~A7!

51, ~A8!

whereK0 is a modified Bessel function of the second kind~a
Macdonald function! @22#. The result~A8! is required on
physical grounds to ensure conservation of pulses. Note
the integrand in Eq.~A7! represents the time-integrated r
sponse at a distanceR; i.e., the total number of pulses reac
ing a unit area at that distance.

Figure 10 shows Eq.~A6! at various times. One point to
note is thatG(R,t) is not ad function atR5vt, unlike in
the better known three-dimensional case. Rather, it is a fu
tion that is concentrated close to the pointR5vt, but with a
tail at smallerR. Such behavior is also seen in the standa
2D wave equation without damping terms and is charac
istic of wave propagation in a 2D geometry. Writin
G(R)5*dt G(R,t), Eq. ~A6! implies G(R)5K0(R/r 0)/
2pr 0

2;(R/r 0)
21/2exp(2R/r0) at largeR, wherer 05v/g, im-

FIG. 10. Green function~A6! for ge5108 s21, r e584 mm, and
v59 m s21 for t52, 4, and 6 ms, from left to right.
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56 839PROPAGATION AND STABILITY OF WAVES OF . . .
plying that axons have a characteristic ranger 0. At small
R, G(R);2 ln(R/r0), which may appear at first sight to b
pathological. However, the total number of synapses at ra
R is proportional to 2pRG(R), which remains finite. Also, it
should be remembered that this logarithmic singularity
present intrinsically in the standard 2D wave equation, wh
does not yield singular responses to nonsingular inputs
desired, the singularity can be removed by replac
K0(r /r 0) by

r 0
22K0~R/r 0!2r 1

22K0~R/r 1!, ~A9!

with r 1!r 0. This Green function has no singularity and co
responds to a pair of fields with characteristic rangesr 0 and
r 1, andf equal to their difference. In general, the seco
field requires the introduction of an additional wave equat
but a local approximation may be possible since it has a s
range.

A Green function of the form~A6! is implicit in the work
of Nunez@12#, who used a wave equation of the form~14! to
study linear cortical waves. Wright and Liley’s, form
@7,13,14# involves ad function, as in Eqs.~17! and ~18!, so
the correspondence with the present work is not exact. C
parison of their distribution of axonal ranges with the pres
form is achieved by integrating over time, as in Eq.~A7!.
The result should be compared with Wright and Liley
G(R). They typically choseG(R)}exp(2R2/r0

2), wherer 0 is
a constant; however, the closest large-R correspondence be
tween the two models would be obtained by substituting
form ~A7! for G(R) in Wright and Liley’s model.

2. Generalized wave equations

It is straightforward to generalize the wave equation~14!
in a number of ways. Most obviously, one could replace it
the form

F ]2

]t2
12g

]

]t
1g22v1

2~e1•¹!22v2
2~e2•¹!2Gf5g2Q,

~A10!

where the subscripts and arguments off andQ have again
been omitted for simplicity. This equation represents a c
of anisotropic propagation velocity, with velocitiesv1 and
v2 along orthogonal principal axese1 ande2. The effective
axonal ranges in these two directions are thenv1 /g and
v2 /g.

A second way in which Eq.~14! can be generalized is t
assume that there are a number of different axonal pop
tions j characterized by different rangesr 0 j and velocities
v j . This is an extension of the procedure described in
preceding section for removing the singularity inG(R). In
this more general case, one can write

f5(
j

f j , ~A11!
y
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with an equation of the form~14! or ~A10! for eachj . This is
also a suitable way to allow for a range of different prop
gation velocities, also parametrized byj @12#. Furthermore, it
is straightforward to generalize Eq.~A10! by making the
coefficients slowly varying functions of time and position.

APPENDIX B: INSTABILITY BOUNDARY ANALYSIS

In this appendix we outline the proof that the stabili
boundary for the quartic dispersion relation~52! cannot be
set by a pair of complex-conjugate roots having Reu50,
whereu52 iv. In our proof by contradiction, we assum
that there are two conjugate rootsu15 iz andu252 iz at the
point of marginal stability, withz.0. We then show that this
assumption contradicts the requirementG>0, with G given
by Eq. ~53!. Hence the stability boundary is set by the co
dition u50, which leads to Eq.~56!.

Equation~52! can be expanded to yield

05u41u3~a1b12g!1u2@ab12g~a1b!1g21k2v2#

1u@2abg1~a1b!~g21k2v2!#

1ab@g2~12G!1k2v2#, ~B1!

where the subscript onge has been omitted for simplicity.

1. Stable roots in a complex-conjugate pair

If we suppose that, at the point of marginal stability, the
are two stable roots given byu352x1 iy and
u452x2 iy , wherex,y.0, then

05u412xu31u2~x21y21z2!12xz2u1z2~x21y2!.
~B2!

Equating the coefficients in Eqs.~B1! and~B2! and eliminat-
ing x andy yields

z25
2abg1~a1b!~g21k2v2!

a1b12g
, ~B3!

G511
k2v2

g2 2
z2

abg2 @ab12g~a1b!1g21k2v22z2#.

~B4!

Direct expansion of the right side of Eq.~B4!, using Eq.
~B3!, shows that it is always negative forx,y,z.0, contra-
dicting the required sign ofG.

2. Stable roots real

The only remaining case is the one in which the tw
stable roots are real with valuesu352x and u452y, for
positive x and y. If we expand the resulting equation an
equate coefficients with those in Eq.~B1! we again arrive at
Eqs.~B3! and ~B4!. Hence this case also yields a contrad
tion, implying that Eq.~53! is the instability criterion under
all circumstances.
.
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