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Propagation and stability of waves of electrical activity in the cerebral cortex
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Nonlinear equations are introduced to model the behavior of the waves of cortical electrical activity that are
responsible for signals observed in electroencephalography. These equations incorporate nonlinearities, axonal
and dendritic lags, excitatory and inhibitory neuronal populations, and the two-dimensional nature of the
cortex, while rendering nonlinear features far more tractable than previous formulations, both analytically and
numerically. The model equations are first used to calculate steady-state levels of cortical activity for various
levels of stimulation. Dispersion equations for linear waves are then derived analytically and an analytic
expression is found for the linear stability boundary beyond which a seizure will occur. The effects of bound-
ary conditions in determining global eigenmodes are also studied in various geometries and the corresponding
eigenfrequencies are found. Numerical results confirm the analytic ones, which are also found to reproduce
existing results in the relevant limits, thereby elucidating the limits of validity of previous approximations.
[S1063-651%97)06006-9

PACS numbgs): 87.22.Jb, 87.22.As, 87.1&

[. INTRODUCTION estimates of physiological parameters within a system of
nonlinear equationfs]. However, other methods are called
Measurement of electrical activity in the cerebral cortexfor when models for microscopic, highly nonlinear neuronal
by means of electrodes on the scalp or the cortical surface isvents are extended to the large scale required to describe the
a commonly used tool in neuroscience and medicine. Demacroscopic EEG waves of the cerebral cortex. Because of
tailed multichannel recordings of activity resulting from neu-the huge numbers of neurons~{0'% in the cortex,
ronal firings are routinely made, showing complex spatialsmoothed-parameter models have been introduced to study
and temporal patterns in the cortical regions where cognitivglobal properties of cortical activity. Such models implicitly
tasks are performed. These signals, known as electroetreat the cortex as a continuualthough they may be dis-
cephalograms or EEGs, display sufficient consistency thatretized for computation characterized by mean densities of
their coarse morphological and spectral features may be enmterconnections between neurdmghich occur asynapses
pirically identified and quantified. The frequency content ofmean neuronal firing rates, etc., with means taken over vol-
EEG and variations in the power spectrum with cognitiveumes large enough to include many neurons. Theoretical jus-
state have been well characterizEd, velocities of EEG tifications for this “mass action” approximation have been
waves have been estimatf2l], and typical features of the given by Steven$6] and Wright and Liley[7] and the re-
EEG response to external stimgio-calledevent related po- sulting match with experimental findings has been discussed
tentialg have been measured. Unfortunately, the connectioby several authorg7].
between recorded EEGs and the underlying neuronal dynam- Both microscopic and continuum models typically include
ics (anda fortiori cognition remains poorly understood. A both excitatory and inhibitory inputs to a given neuron,
few of the most basic properties of cortical waves appear tovhich may itself be either excitatory or inhibitory in its ac-
be establishefi3], but virtually everything beyond this level tion on other neurons. Excitatory inputs tend to increase the
is the subject of considerable debate and the wealth of eXiring rate of a given neuron, while inhibitory ones reduce it,
perimental data is largely wasted in the absence of a moreith both effects being nonlinear due, for example, to satu-
solid theoretical framework within which to analyze it. ration at a maximum physiologically possible firing rate.
Numerous models of cortical activity have been devel-Thus, in general, continuum models must incorporate mean
oped at a variety of levels of description. At the most funda-densities of both populations of neurons, and of both types of
mental level are neural networks, which attempt to describénterconnections, as well as the two neuronal firing rates.
the interconnections between individual neurons with vary-Delays in the propagation of signals through neuramnisich
ing degrees of idealizatiof4]. We term such simulations are highly elongatedmust also be included. These delays
microscopicbecause of their incorporation of microstructure are of two typesdendritic lags, in which incoming signals
and neglect of long-range interconnections. Most notablyare delayed in the dendritic fibefsee Fig. 1, and axonal
Freeman has modeled the EEG arising from the olfactorylelays of outgoing signals due to the finite propagation ve-
bulb of animals, during the perception of odors, by unitinglocity along the axon.
The first continuum moddR,10] included excitatory and
inhibitory populations in an infinite, linearized, one-

*Electronic address: robinson@physics.usyd.edu.au dimensional1D) model. With suitable adjustment of param-
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tions (i.e., of synapses Nonlinear effects and axonal and
dendritic delays were all included, with a Green-function for-
mulation describing the interconnections between patches as
a function of their spatial and temporal separation. This
model incorporated all relevant effects mentioned above, ex-
cept convolutions and nonuniformities in cortical connectiv-
ity, while allowing for the imposition of a variety of bound-
ary conditions. Moreover, its parameters were largely
physiologically measurable, a significant advantage when
comparing its predictions with measurements. However,
simulations based on it have been limited to very small sys-
tems(or very coarse resolution in larger systemsie to its
formulation in terms of Green functions, which are very slow
to evaluate, and a numerically intensive treatment of den-
dritic lags.

The central purpose of this paper is to introduce a model
of cortical electrical activity which includes nonlinearities,
axonal and dendritic time lags, variable geometries and
boundary conditions in 2D, and which permits analytic stud-
ies of wave properties and stability, while speeding compu-
tation to the point that whole-cortex simulations are possible
with good resolution. This is accomplished in Sec. Il by
introducing a continuum wave-equation model to replace the
linear parts of Wright and Liley’'$13—15 discrete Green-
function one, and also by simplifying their treatment of den-
dritic lags. The new model is not identical to that of Wright
and Liley, but incorporates the same underlying neurophys-
ics to a similar degree of approximation. Neither model ad-
dresses the question of filtering of cortical signals through
the skull to determine the scalp EEG, a problem that can be
avoided in any case by using magnetoencephalograms
(MEGs) based on the magnetic signals associated with neu-
ral activity. The task of the remainder of the paper is to lay
the mathematical basis for analysis of this model and obtain

FIG. 1. A typical neuron of the cerebral cortex, from a Golgi ItS basic properties. In Secs. lll and IV we investigate the
stain(Ref.[8]). The scale bar represents 0.1 mm. Pulsed signals arét€@dy-state properties of the model and study the propaga-
generated at the soma)(and propagate over the axonal tred (o tion and stability of small perturbations in the limit of an
make contact, at synaptic junctions, with the dendritic treBsof infinite medium. Periodic and spherical boundary conditions
thousands of other neurons. Synaptic inputs are summed by trfe€ imposed in Sec. V to investigate the properties of global
dendrites, and axonal pulses generated if the soma is depolariz&igenmodes and the eigenfrequencies are calculated for typi-
beyond the cell’s threshold. cal human parameters. An algorithm for numerical study of

our model is described in Sec. VI and its output is used to

ear effects, axonal delays, and the convolutions of the corteX €y key analytic results obtained in earlier sections.
Nunez[11,12 added axonal delays in order to investigate

global modes. This model permitted wave solutions and, Il. CORTICAL MODEL

with the imposition of boundary conditions, the excitation of

global eigenmodes. Nunez solved this model analytically for,

a 1D loop cortex, and for two-dimensional cortexes with ¢ cortical activity. The relationships of this model to those
per!odlc and with spher_0|dal boundary conditiofi®., ig- ¢ Wright and Liley [13-15 and Nunez[11,19 are de-
noring the more compllcatgd convo!uted form of.the realscribed in this section and Sec. IV, respectively.
cortex, and the inhomogeneity of cortical connectjpirger-
preting observed cortical wave frequencies in terms of dis-
crete eigenfrequencies. This model predicted global modes
whose frequencies approximately match those of the major An excitatory neuron such as the one shown in Fig. 1
cerebral rhythms. In particular, the alpha rhythm was interemits pulsesi.e., fireg at a mean rate, that is determined
preted as being at the fundamental cortical eigenfrequencyby the potentials generated in the dendritic tree by the syn-
Wright and Liley [13—-15 introduced a spatially dis- aptic inputs of thousands of other neurons. Threshold poten-
cretized model in which the cortex is treated as 2D and ditials, above which high firing rates occur, are not identical
vided into patches, each of which is parametrized by thdor all neurons, but have a centrally peaked distribution. We
mean densities of excitatory and inhibitory neurons, theircan then make a continuum approximation by replacpg
mean firing rates, and their mean densities of interconneawith a local mean valu®., averaged over many neurons,

In this section we describe the relevant neurophysics and
europhysiology and incorporate it into a continuum model

A. Model equations
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and introduce the mean dendritic potentil. Similar con- 80 ——
siderations apply for inhibitory neurons, denoted by the sub- 70 b -
scripti. Taking account of the spread of individual threshold 60 -
potentials, one then finds the nonlinear relationship g0k i
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FIG. 2. Weight functionw(u) given by Eq.(6) for «=100

where C is a positive constant and we have assumed thé ©andB=350s "

distribution (2) of threshold potentials relative to the mean

valueV, [a Gaussian distribution would be equally compat-Ed. (6) enables Eq(4) to be split into two ordinary differ-
ible with physiological measurements, yielding an errorential equations via the introduction of auxiliary potentials
function in place of Eq.1)]. In Egs. (1) and (2), Qe is  Ue;i andW,;, with

measured in units of the maximum value possi2&0—1000

s~ 1 per neuroi, and potentials are measured in units of the t ,

characteristic standard deviation of the threshold distribution. Uei(r,t)= f_xe_“(t_t 'Qaeai(r,t)dt’, ®
Suitable values of the constants in Eq4) and (2) are

C=1.82 andV,=3 [14].

Within a particular neuron, the relationship between the _ _ ft —B(t-t)) PRI
rate of arrival of incoming pulse®),. or Q,;, and the cor- We,(1,0)= %e Qac.ailr,t)dt’, ©)
responding potential, or V;, is complicated. The induced
transmembrane voltage perturbation propagates along the af
dendrites in a way that depends on the local dendritic capaci- Vei(r,)=g———[Ugi(r,t)—We,(r,t)]. (10)

tance and resistivity5]. However, for the situation consid- B—a
ered here of aggregate neural masses, we adopt the empirical

finding that the temporal spread and conduction delay withinye find

an individual neuron’s dendritic tree may be described by a

simple impulse response. Specifically, Freenigh found dUq.(r,t)

that one can write T:Qae,ai(rvt)_aue,i(rit)a (1D

t
Ve,i(rat):ngQCW(t_t,)Qae,ai(rat’)dt,v (4) dWei(r,t)

T:Qae,ai(r:t)_lgwe,i(r,t) (12)
wherew(u) is a non-negative weight function, with a char-

acteristic width of~10 ms and for B+ a. For a= 3, one can work directly with/,; using
the equation

f w(u)du=1. (5)
0 d? d
— +2a— +a?
dt? dt

Ve,i(rat):gazQae,ai(rvt)- (13)
A suitable choice fomw(u) is

Equations(11) and (12), or Eq. (13), are much simpler to

o .
i (e"®—e AY),  B#a (6) treat than the general caé®), but preserve all the essential
w(u)=4 B-a physics. For applications in which only the characteristic
alue ®, a=p (7) time scale of the response(u) is important, one may as-

sumepB>a~100 s ! and omitW.
for u>0, wherea and 8 are positive constants. This func-  When a neuron fires, the pulses propagate along the axon
tion, shown in Fig. 2, peaks at,=In(g8/a)/(B—a) for «  and axonal tree to provide incoming pulses at other neurons
#pB and atu,=1/a for a=p. This peak location can be various distances away. The strength of interaction decreases
chosen to be approximately 5 ms to correspond reasonabBs the number of synapses decreases with increasing dis-
closely to physiological parametefs,9,10, although some tance. If we assume a characteristic axonal propagation ve-
authors favor somewhat larger values with-3~400 s'*  locity v and an isotropic distribution of axons in the con-
[16]. tinuum approximation, we can approximate the outward
In general, Eq.(4) is a convolution that is difficult to propagation of pulse density as a wapg; generated by the

handle analytically or numerically. However, the choice ofsourceQ, ;. We thus find
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92 J TABLE |. Estimated typical values for mouse, cat, and human
W+27€JE+ ygyi—szz dei(r,t)= ygyiQe,i(r,t), of the parameters defined in the text. Most are taken from Refs.
(14) [15,16.
Parameter Mouse Cat Human
where yei=v/re; andr,; is the characteristic range of the
axons(assumed to have an approximately exponentially de@ee 0.8023 0.844 0.853
creasing distribution at large rangef\ppendix A discusses & 0.0112 0.004 0.002
the connection between E@L4) and the axonal range distri- aie 0.1186 0.122 0.126
bution and explores generalizations of this equation to aniscae; 0.0626 0.022 0.011
tropic media and media in which there is more than oneu, 0.0046 0.007 0.007
characteristic axonal range. Typical values of the constants; 0.0007 0.001 0.001
in Eq. (14) arer,=0.08 m andr;~10 % m for humans. r o(mm) 2 2.7 84
The incoming potential®,. andQ; at a particular loca- y (ms™) 9 9 9

tion comprise contributions from the wave potentiagls; Ro (mm) 3.8 5.1 157
and inputs external to the cortex. These inputs are usually,; (mm) 13 18 558
split into two classes: a uniform meaonspecifieexcitation g 25 37 36

Qs resulting from the sum total of inputs from noncortical
structures in the brain aside from those involved in a particu-

lar stimulus under study, andspecificexcitationQg due to B. Comparison with Wright and Liley's model
stimuli, which is defined here to include both noisy and co-
herent components which may or may not be spatially Iocal:[
ized (e.g., in the visual cortex in response to a visual stimu
lus). The resulting equations are

Wright and Liley[7,13—15 developed a model similar to
he present one. Its similarities and differences are discussed
here. A similar discussion for Nunez'’s linear modi&l,12
is given in Sec. IV A.
The first point of similarity between the two models is
Qaell, 1) =MeQs(r,t) + ueQnst Aeedel(r 1) —aeihi(1,1), that both use the forn) for the relationship betwee@, ;
(15  andV,,. Equation(4) is also the same in both models, but
the present choice fow(t) enables the convenient forms

Qai(r,t)=M;Qq(r,t) + uiQpst Aje Pe(r,t) — & i (1,1). (10—(13) to be obtained. In contrast, Wright and Liley

(16)  [7,13-19 used a less physiologically justifiable triangular

function to approximate the curve shown in Fig. 2, and

The constant!, andM, determine the strength of coupling evaluated the convolutio) by direct integration. Numeri-
of specific inputs to excitatory neurons and inhibitory onescally, this led to large demands on processing and storage
respectively. Likewiseu, and u; represent the densities of (see Sec. VL o
synapses associated with nonspecific stimuli. The parameters The main difference between the two models is in the
e, Aei, dje, anday are the synaptic densities associatedtreatment of axonal propagation. Wright and Liley made the
with excitatory and inhibitory inputs to excitatory and inhibi- local approximationg; =Q; (although they did not describe
tory neurons. Note that we have defir@gto be constantin it in these termsand employed a Green-function formula-
time and space, whil®, may vary in time and space but is tion in place of Eqs(14)—(16). Their corresponding equa-
defined here to have zero spatial and temporal means. ~ tions for Qe and Qy; in terms of Q. and Q; were in dis-

If the range of the inhibitory axons is sufficiently short, cretized form and involved additional parameters describing
their inhibition can be considered to be a local effect andhe coupling of a given discrete region to itself. Discretiza-
axonal delays can be neglected. In this case, every inhibitof{fONn IS an unnecessary CompI}catlon herg, so we give their
pulse is immediately received locally and one can replac€duations in the following equivalent continuum form:
¢; by Q; in Egs.(15) and(16) and omit the inhibitory ver- _
sion of Eq.(14). This local inhibition approximation limits ~ QaelD=MeQs(r. 1)+ 11eQns~aQi(r.1)
the validity of the resulting equations to scakes;~ 0.1
mm, which is not problematical in practice because the +aeef dzf'f dt’ G(r,t;r',t")Qe(r’,t"),
finest-scale probes currently applied to the cortical surface
are arrays with separation of order 1 ni@0], while scalp 17
electrodes typically have separations of 20-50 mm. Natu-
rally, if one wishes to explore possible long-range inhibitory ~ Qai(r,t)=M;Q4(r,t) + 1iQns—a; Qi(r,t)
interactions, this approximation can be easily relaxed.

Our model is characterized by the system of seven equa- +aief d2r’f dt’” G(r,t;r',t")Qq(r’,t"),
tions (1), (10—(12), and (14)—(16). Typical values of the
constants in these equations are given in Table | for the cor- (18
texes of mouse, cat, and human. Also quoted are values for
the equivalent radiuR, of a spherical cortex with the same G(r,t;r' tH=G(r—=r')st—t' —|r=r’|/v). (19

area as the actual convoluted one, and the linearlsjze a
square cortex with the same property. The quantMgsand  In these equationg. is expressed as an integral over the
M; have not been measured. retarded Green functiofl9), which corresponds to signals
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TABLE Il. Relationship between symbols for quantities used 12 : : |
here and those used by Wright and Liley in previous work. Note the
reversal of the ordering of the mixed subscripisandie in the 1.0 7]
present work relative to Wright and Liley’s notation. 08 ™ .
™~
Symbol used here Symbol used by Wright and Liley 06 ™~ ~ 7]
04 . —
Aee et Bee 02 L N B
& Bii 0'0 I | | I\
a; it Bei .
a. e'ﬂieﬁe' 00 02 04 06 08 1.0
Me Mee Qe
Mi Mei
Mg Mee FIG. 3. Graphical solution of Eq26). The left and right sides
M; Mei of Eqg. (26) are shown as the curve and straight line, respectively,

for a particular case. There are three solutions if the peak of the

curve lies above the straight line, as shown, but only one otherwise

that propagate at a velocity. This integral is slow to com- (located very neaQ.=1).

pute numerically and involves a large amount of storage

Sec. V); to date these factors have limited simulations using 1

Egs. (17) and (18) to relatively small grids, which do not quCVO_gC(“iQnS+aieQe_aiiQi)]:_i_l' (29

always provide adequate resolution for the desired applica-

tions. In addition, in their discrete form, they involved addi-  Equation(24) can be used to elimina®; from Eq. (25)

tional parameters associated with the scale of the discretizas give a single, rather cumbersomigut numerically

tion. One advantage is that the form of the spatial part of thgtraightforward, equation for the steady-state value@f,

Green function can be chosen at will, with Wright and Liley whence the other steady-state quantities can be determined

using a Gaussian to approximate the decreasing synaptigsing Eqs(20)—(24). Rather than treat this equation analyti-

density at largér —r’|. Appendix A contains a discussion of cally here, we approximate Eq&4) and (25) and compare

the relationship of this Green function to the one implicit in our results with numerical solutions of the exact equations.

the present work. Noting from Table | that physiological measurements im-

The notation used in the present work is somewhat differply a,;<a.., Eq. (24) implies

ent from that used previously by Wright and Lil¢y,13—

15]. Changes have been made partly because some of their QeexdCVy—gC(1eQnst2:Qe)]=1—Q.. (26

parameters are redundant in the present formulation, and

partly to conform more closely with conventional usage inThe left side of Eq(26) is non-negative, with a single maxi-

physics and mathematics. The relationships are given imum wheregCa,Q.=1; at largeQ, it decreases exponen-

Table Il. tially fast. Figure 3 shows graphically that E&6) can have

either one solution or three, depending mainly on the values
Il STEADY STATE of Vo and Q. One solution, always present, is located very
close toQ.=1, with
Understanding of the dynamics of our model begins by

determining the uniform, steady-state behavior. Evaluating Qe~1-exdCVo—gC(ueQnstace—ac)],  (27)
the integral in Eq.(4) for this special case and setting all
derivatives to zero in Eqg14)—(16) yields Qi~1-exdCVo—gC(1iQnstaie—a;)]. (28
Vei=0Qacai, (200  The other two solutions, which only exist for small values of
' ' Qs are located at small values . If we neglectQ, on
be.i=Qei (21) the right of Eq.(26), these solutions are
Qe=(gCao) n{B~Hn[B~tIn(--)]}, (29
Qae™ 1eQnsT AeetPe— Acithi (22 ¢ { J
Qe=(9gCao 'B exp{Bex B exp---)]},  (30)
Qai= HiQnst @iePe—aii ¢, (23 ©

B=gCa.expgC —CVp). 31
where all quantities have spatially uniform steady-state val- 9C X9 CLeQns o) 3D

ues. Equatior(21) can be used to eliminatg,; from EQs.  \when, for purposes of numerical evaluation, EG®9) and
(22) and (23). Then Egs.(20), (22), and (23) are used t0  (30) are recast in an iterative form, they become, respec-
elimateV,; from Eq.(1), in favor of Q. ; . These steps yield tively,

eX CVo—gC(ueQnst aedQe—aciQi) 1= é_li Xn+1=IN(Xn /B), (32

(24 Xn+1= B expXp), (33
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FIG. 4. Steady-state values G for the human parameters from Table I. The approximate solutiof&7) and(28) are shown as

from Table I. The approximate solutiorf&9), (30), and (32) are
shown as dashed curves, while exact solutions of &48.and(25)

dashed curves, while exact solutions (@8) and (25) are drawn

solid. The square symbols show steady-state valué€y; abtained

are drawn solid. The square symbols show steady-state values olsLthe fully nonlinear simulations described in Sec. VI(Bowever,

tained in the fully nonlinear simulations discussed in Sec. V(dB.

Qe (0) Qi

respectively, where in both cas€k, is related to the limit
X, by

Qe=(9Cagd) X... (39

Equation(32) is found to converge to the larger of the two

solutions, while Eq(33) converges to the smaller solution.
The corresponding values @f; are given by

Qi=QeeXd —9C(te— i) Qns— 9C(ace— Aie) Qe
(39

Note that wherB=e "1, thenQ.=(gCa.¢ ! according to
both Eqgs(29) and(30). The solutiong29) and(30) are only
valid for B<e™ 1, which places an upper bound @yin the
low-Q. steady state:

Qns<[CVo—1-In(gCae) 1/(gCue). (36)
For non-negative&), ¢ this criterion also implies
eCVo—1
9<Ga (37

for low-Q. steady-state solutions to exist. The solutions

(27)—(35) can be substituted into Eq§20)—(23) to obtain
steady-state values of other quantities.

Figure 4 compares the approximate solutiag9) and
(30) with the numerical solution of Eq$24) and(25) for the

these simulations lacked sufficient precision to give useful steady-

state values for £ Q..) (8 1— Q.. (b) Q;.

cases the agreement is seen to be good. The approximation is
least satisfactory near the rightmost point of the locus of
solutions in Fig. 4. For example, EQq(36) gives
Qs<0.9520 for the existence of lo@-, solutions, whereas

the full equations yieldQ,<1.0000. The small errors
present in Eqs(29)—(35), and demonstrated in Figs. 4 and 5,
arise from the neglect df. on the right side of Eq(26).

This neglect is justified on experimental grounds where it is
found that in the normal cortex typical rates of less than 20
pulses per second per neuron are observed, compared with a
maximum possible rate of 250—-1000%[4,17]. The square
symbols in Figs. 4 and 5 are discussed in Sec. VI B.

In summary, we have found three fixed points of E@d)
and(25). One, given by Eq(27), corresponds to a seizure in
which all neurons are firing at near their maximum possible
rate. The next two, given by Eq&9) and(30), involve low
firing rates of all neurons, similar to what is seen in the
normal state of the cortex. We discuss these steady states
further in Sec. IV B, once their stability characteristics have
been clarified.

IV. WAVE PROPERTIES: INFINITE MEDIUM

In this section we consider the properties of small pertur-
bations about the fixed points found in Sec. lll. This yields
the dispersion relations and growth or damping rates of the

human parameters from Table I. Figure 5 shows similar rewaves, and the linear stability boundary of the system. We

sults for the fixed point given by Eq$27) and (28). In all

do not consider nonlinear wave propagation or instabilities.
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A. Wave dispersion where some small terms have been neglected subject to the
To determine the linear wave properties of our model, weASSumption thail;>M. is notsatisfied. The linear response
must first linearize Eq(1), writing of the cortex to a specmc signé), is given by Eq.(51) in
Fourier space. One significant point is that all the inhibitory
Qi = QW+ peil Ve, — VT, (38)  coefficients have disappeared, having been discarded as

small quantities in going from Eq&9) and(50) to Eq. (51).
whereQ'®) andV(? are the relevant steady-state values fromHence it is the excitatory component that determines the
Sec. Il andpe;=dQ,;/dV,,; at this point. Fourier trans- long-range behavior.
forming Egs.(38) and (10)—(16), and deleting the compo-  For freely propagating waves, E(h1) with Qs=0 gives
nents k,»)=(0,0) (which were treated in Sec. )lithen the dispersion equation

yields
(a—iw)(B—iw)De— aBy2G=0. (52
Qe,i=Pe,iVe,is (39
The quantityG, given by
Vei=09LQaeais (40
G=pelace, (53
afB
L= m (41) is the net gain in the loop in which a low-frequency, I&w-
perturbation of magnitude in ¢, gives rise to perturbations
Aee€ N Qaes J8ce€ IN Ve, peface in Qg, and
Deidei™ ye Qe 42 pelda..6=Ge in ¢.. Equivalently,G is the mean number of
= (Yo —i®)2+ k20?2 (43) pulses stimulated by each pulse emitted. Equati#h can
el ’ be approximated as
Qae_Mer+ aee¢e a(-Z‘I(ﬁl 1 (44) (a{—lw)De—a'in:O, (54)
Qai=MiQst+ajepe—aii ¢, (45 Do 7260, 55

where the arguments andw are implicit. It is worth noting

from Egs. (40) and (41) that |L| decreases monotonically for 8> a,w and forg,@> w, respectively. For typical physi-

with » and, hence, the dendrites act as low-pass filters thatlogical parameters(10,18 one has =100 s ' and

tend to remove frequencies>min{a,}. B=350 s ', and the approximationg4) and (55) are ap-
We can writeQ; in terms ofQ,e 5; Using Eqs(39) and plicable for frequencies$ = w/27 given by f<55 Hz, and

(40). Equations(44) and (45) can then be used to write f<15 Hz, respectively. Only the first of these is appropriate

Qe in terms of ¢ ; . If the results are substituted into Eq. t0 study the full range of normally recognized human EEG
(43), we find rhythms, although Eq55) may be semiquantitatively useful.

In the single-parameter case= 3~200 s !, Eq. (54) does
(De—Feaee) Pt Feaeipi =FMQs, (46)  not apply but Eq(55) is valid providedf<30 Hz.
Equationg52) and(54) incorporate dendritic lags to gen-
(D;+Fiaji) ¢i— Fiaiepe=FiM;Qq, (47)  eralize the corresponding linear wave equation obtained by
Nunez[11,17, which omitted these lags and was of the form
Fe,i=7§,ipe,i9L- (48) (55). Nunez's equation applies in the limit in which these
lags are negligible. However, the discussion in the preceding
A dispersion equation foe, alone results from elimina- paragraph implies that this is at best semiquantitatively cor-
tion of ¢; from Egs.(46) and(47). Instead of following this  rect for the alpha rhythmfé=10 H2 and is an increasingly
route, we make the local-inhibition approximatiaeh = Q; poor approximation at higher frequencies. Examples of the
based on the short range of the inhibitory fibers. As mensolutions of Eqs(52)—(55) are given in Sec. IV C, after we
tioned earlier, this approximation limits us to consideringhave discussed the question of stability.
waves with wavelengths longer than a few tenths of a mm.

We then find B. Linear stability
(De—F e@ee) he=Fo(MoQs—aniQ;). (49) Equations (52), (54), and (55 are polynomials in

u=—iw with purely real coefficients. Hence solutions for

Elimination of Q; in favor of ¢, as before, then yields u are either purely real or occur in complex-conjugate pairs.
Growing solutions correspond to lm=Reu>0. From Eq.
(55) we find

Q 2+F (M Qs+ ale¢e) (50)
i8i = —iye*i(y:G—k%?)2 (56)

After substitution of Eq(50) into Eq. (49) we then find the

wave equation This result immediately implies that an instability occurs for

(De—Felod pe=FMQs, (51) G>1+Kk%? y3=1+Kkrg, (57
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with equality in Eq.(57) defining the instability boundary. ously in numerical worK7,14] and presumably corresponds
The least stable perturbations arekat0. At largek, the to a grand mal seizure in nature.
waves are damped, propagating modes, with Numerical calculations show empirically that nonlinear
w~=*kv—ivye. In the case of the quartic equatigh?2) at  systems initialized wittQ, below the upper of the two low-
largek, D, can be either large or small. If it is large, we find Q. solutions tend to converge to the lower one, while sys-
two purely damped modes with~ —ia,—ig. If itis large, tems initialized with highe®. converge to the solutiof27).
there are two propagating modes that approach the kigh-Thus Eq.(29) approximately defines the boundary between
solutions of Eq(56). Since there can be only four solutions the basins of attraction even in the nonlinear case.
to a quartic, these four modes are the only ones. Similar It has been remarked previously on many occasions that
reasoning can also be applied to the cubic equat®h, self-organizing systems such as the brain must by their very
yielding the same modes except for the oneat—i 3. nature operate ““on the border of instability” or “on the edge

The quartic and cubic equationg2) and (54), can be of chaos”[19]. Otherwise, complex behavior would not be
solved analytically in the general case, but the solutions arpossible because the system would either be unstable or
too unwieldy to be useful. Here we obtain the stability would settle into a relatively quiescent stébe, at least, one
boundary for these equations by considering the special casd low complexity). We can measure the nearness of the
where the rods) with the largest Reu are marginally stable cortex to marginal stability by taking the ratio of the damp-
with Reu=0. The stability boundary for the cubic equation ing rate atk=0 in Eq. (57) to the corresponding rate for
can be obtained from that of the quartic in the lifgit>0, so  G=0, since it is the cortical gain parametgrthat controls
we consider only Eq(52) here. stability. The resulting parameter-1G*? is approximately

There are two ways in which instability can first set in and0.4 for the normal state of the mouse, cat, and human for the
from which the instability boundary can be calculated: eithemparameters in Table I, even f@,,s=0. Thus, even without
a real root can reach the point=0 or a pair of complex- stimulation, the cortex is more than halfway to instability for
conjugate roots can reach the point where they are purelthe parameter values adopted here. In the more typical case
imaginary. The latter case breaks into two subcases in whictn which Q¢ is sufficiently large thaQ.= 0.015, the stability
the other two roots have negative real parts and are eithgrarameter is only 0.07, implying that the cortex is very near
purely real or are complex conjugates. In the case of a redb instability under typical conditions.
root being the first to reach the instability boundary, the
boundary corresponds to=0. Equation(52) immediately
yields the criterion57) for instability. The dendritic param-
etersa and 8 do not enter this criterion because the fre- The dispersion relation2), (54), and(55) are straight-
guency is zero at the point of marginal stability, whenceforward to solve numerically. Several sample solutions are
L=1 in Eq. (41). In Appendix B we demonstrate that the examined in this section to illustrate the main features of
cases in which a pair of complex-conjugate roots are the firsttable and unstable waves, and the similarities and differ-
to become unstable have no consistent solutionGor0.  ences between the waves predicted by the three equations.
Hence Eq(57) is the instability criterion for Eqs52), (54), Figure 6 shows the real and imaginary partswofor the
and(55) in all circumstances. various modes predicted by Eq82), (54), and(55), which

For k=0, the criterion(57) can be used to determine the predict four, three, and two modes, respectively. For the pa-
stability of the fixed points found in Sec. Ill. Using Eq8)  rameters given in the caption, the system is predicted to be
and(53), we find stability only for stable for allk and, indeed, Imw<<0 throughout. The solu-
tions labeled+1 havew~ —ivy.*kv at highk, in accord
with the discussion in Sec. IV B. For these solutions, the
group velocityvy= dRew/ dk approaches-v ask increases,
implying that axonal propagation chiefly determines the
This criterion immediately implies that the higs root (27) propagation of electrocortical waves in this limit. This de-
is stable. By imposing the same approximation used in detived velocity is in accord with cortical and scalp measure-
riving (27), (29), and(30), namely thaiQ.<1, Eq.(58) be- ments [2,20,21. The solutions labeled 10 and (H have
comesQ,<(gCaeg *. As noted above, this value 6J, is @~ —ia and w~—ip, respectively, at largé, also in ac-
the one at which the solutiori&9) and(30) coincide, and is  cord with Sec. IV B. The three least damped modes are very
located at the rightmost point in Fig(a. Consequently, this  Similar in both the quartic and cubic cases, implying that the
inequality identifies théower of the two solutions, Eqi30),  cubic approximation(54) is adequate under these circum-
as being stable, while Eq29) is unstable. Thus there are stances. Important differences between the quadratic case
two basins of attraction in a linear approximation, corre-and the other two are that the least damped mode is one of
sponding to the two stable roots. the pair =1 in the former case, and theLOmode in the

(i) A “normal” low-activity state, corresponding to Eq. other, and that the quadratic case has no propagating modes
(30), in which all neurons fire at rates far below their physi- for k?2<y2G, in agreement with Eq(56). Interestingly,
ological limits. This state corresponds to the stable one founthe =1 and (H solutions become less damped at high
previously in numerical calculation¥,13—13 and to nor-  while the (L solution becomes more heavily damped.
mal levels of cortical activity in nature. Figure 7 shows a case where the parameters correspond to

(ii) A saturated high-activity state, corresponding to Eg.an unstable solution to the steady-state equatiors=al.
(27), where physiologically maximal firing rates are ap- The mode structure is the same as in Fig. 6, except that there
proached during a seizure. This state was also seen prevare growing solutions where Ed57) is satisfied. This

C. Numerical solutions of dispersion relations

Qe(l_Qe)<(gcaee)71- (58)
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FIG. 7. Dispersion of the modes predicted by E@R), (54),
and (55). The left column shows Re while the right shows
Imw. The four roots predicted by E¢G2) are shown in the top row

FIG. 6. Dispersion of the modes predicted by E@R), (54),
and (55). The left column shows Re while the right shows
Imw. The four roots predicted by E¢62) are shown in the top row
of the figure, the three roots predicted by B¢ are shown in the  ©f the figure, the three roots predicted th4) are shown in the
middle row, and the two roots predicted by E§5) are shown in  Middle row, and the 2 roots predicted by E5) are shown in the
the bottom row. The parameters of the system are the human p&ottom row. The parameters of the system are the human param-
rameters from Table | wittG=0.57, corresponding to the stable €ters from Table | withG=1.602, corresponding to the unstable
fixed point atQ,.=0.7. Propagating modes have either positive orfixed point atQ,s=0.7. Modes are labeled as in Fig. @) Rew,
negative Re and are labeled-1 and—1. The two nonpropagating duartic dispersion relatiorib) Imw, quartic dispersion relatiortc)
modes are labeled OL and OH as they are distinguished only b{réw, cubic dispersion relatior{d) Imw, cubic dispersion relation.
their degree of damping, which, reflecting the valuesaadnd 3,  (€) Rew, quadratic dispersion relatioff) Ime, quadratic dispersion
may be low or high.(3) Rew, quartic dispersion relation(o)  relation.

Imw, quartic dispersion relatioric) Rew, cubic dispersion relation.
(d) Imw, cubic dispersion relatione) Rew, quadratic dispersion
relation. (f) Imw, quadratic dispersion relation.

ductions in symmetry and inhomogeneities will lead to
splitting of degenerate eigenfrequencies found below, a point
noted by Nunez in the context of his linearized analysis

boundary is the same for quadratic, cubic, and quartic eque{ll’lz-
tions, as the discussion in Appendix B implies. The unstable
wave is in thex 1 branches in the quadratic case, and in the
OL branch in the other two cases. This anomaly in the qua- . - .
dratic case is due to the two solutions of EB5) being the If we impose periodic boundary conditions on a.rectangu-
only ones available, which forces them to change their char@" cortex with edges of length, andL, (both of which we

acter from propagating to nonpropagating laslecreases, will denote byL o when they are equalthe wave vectok is

whereas higher-degree dispersion relations have a differefgStricted to values (@n,/L,,2mn, /L) wheren, and n,
topology. are integers. This corresponds to selecting out a series of

discrete eigenmodes from dispersion curves such as those in

Figs. 6 and 7 as having the only combinationseofind k

allowed in the finite cortex. Note that modes with equal and
The previous two sections have explored the properties appposite values of, and/orn, are always degenerate.

our model for an infinite medium. Since the cortex is finite One important point to note is that, for

we now examine the effects of imposing boundary condi-1<G<1+(27Tre/ma>{Lx,Ly})2, only thek=0 mode is un-

tions on our equations. Two cases are considered here: pegtable. Since Zr =L for the parameters in Table |, this

odic boundary conditions on a square corfe®., a toroidal can be a substantial range of parameter space. Thus, when

topology, but not geometyyand a spherical cortex. We do considering the global linear stability of the brain, the prob-

not consider the effects of cortical convolutions or inhomo-lem can often be reduced to that of a single mode by virtue

geneities in this paper, except to choose the size of ouef the discrete nature of the eigenspectrum.

square or sphere so its area equals that of the actual, convo- Table Ill lists Re» and Imw for solutions of Eq(52) with

luted cortex seen in nature. Both convolutidios other re- human parameters from Table G=0.57, and periodic

A. Cortex with periodic boundary conditions

V. WAVE PROPERTIES: FINITE MEDIUM
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TABLE IlIl. Lowest eigenfrequencies for periodic boundary = TABLE IV. Lowest eigenfrequencies for periodic boundary
conditions on a square cortex for the human parameters from Tableonditions on a spherical cortex for the human parameters from
I. In addition, «a=100 s!, B=350 s?! Q,=0.7, and Table|withQ,=0.7,4=100s !, B=350s !, andG=0.57. The
G=p.0a..=0.57. The real and imaginary parts@fare given as a real and imaginary parts @ are given as a function of the quan-
function of the quantum numbers, and n, for modes that have tum number for modes that have positive real frequency. Purely
positive real frequency, in order of increasing real frequency.damped, nonpropagating modes are omitted. The eigenfrequencies
Purely damped, nonpropagating modes are omitted. Only cases witire independent of the quantum number

n,=n,=0 are listed because the modes are degenerate under each

of the replacements,— —n,, n,——n,, andn,<n,. I Rew (sY) Ime (s
Ny ny k (mfl) Rew Imw 0 93.1 —142.7
1 113.0 —133.2
0 0 0.0 93.1 —142.7 2 153.2 —120.8
0 1 11.3 124.4 —128.7 3 204.9 —113.8
1 1 15.9 155.6 —120.3 4 260.1 ~110.6
0 2 225 208.8 —113.4 5 316.3 ~109.2
1 2 25.2 231.4 —111.9 6 373.1 ~108.5
2 2 31.8 289.5 —109.8
0 3 33.8 306.6 —109.4
1 3 35.6 322.7 —109.1 this constraint, Eq(59) leads to a dispersion relation very
2 3 40.6 367.1 —-108.6 like Eq. (52 except that the quantitk?® is replaced by
0 4 45.0 406.6 —108.3 I(1+1)/R2. The azimuthal quantum number does not ap-
1 4 46.4 419.0 —108.2 pear in the dispersion relation, so all-21 modes for fixed
3 3 47.8 431.1 —-108.1 | are degenerate for a precisely spherical cortex.

Table IV lists Revw and Imw for solutions of Eq(52) with
human parameters from Table G=0.57, and spherical
boundary conditions for smatl, andn, in order of increas- boundary conditions. Values for smélare given in order of
ing Rew. Purely damped, nonpropagating modes are noincreasing Re and purely damped, nonpropagating modes
listed. The tabulated values all lie on the branch labeledre not listed. The eigenfrequencies increase approximately
+1 in Figs. @a) and @b); the parameters of the branch as \i(I+1) at largel and are in the range observed for
labeled— 1 are obtained by reversing the sign ofd&@hree  cortical frequencies. As in the periodic cortex, the mode
important points to note are théb the imaginary part ol widths exceed their separations, so we do not expect noise to
gives the characteristic width of each mode in frequencygexcite clear resonances for these parameters.
since these widths are larger than the separation between
modes for the parameters of Table Ill, one would not expect
to see well defined resonances when these modes are excited
by white noise, for exampldii) the prominence of the reso- In order to study the dynamics of our full nonlinear
nances is reduced when, as in the present situation, the scatedel, Eqs(1), (10)—(12), and(14)—(16) have been imple-
length of the damping;,, is less that the circumference of mented numerically. This section outlines the methods used
the system, andii) the minimum frequency of a propagat- and numerical confirmations of the key analytic results ob-
ing mode is~15 Hz, which lies in the typical physiological tained in earlier sections.
range.

VI. NUMERICAL RESULTS

A. Methods

Of our seven equations, implementation of Ed3, (10),
If we Fourier transform Eq(52) in space, we find the (15), and (16) is trivial, since they involve no derivatives.
form Likewise, Egs.(11) and (12) present no difficulties because
S o 2 they are ordinary differential equationstn

vVoPe(r)=[(ve— i) —LyeG]e(r), (59) In solving the wave equatiofil4), we make the local-

o _ inhibition approximationg;=Q;, which removes the need
where the temporal variation exp(—iwt) has been separated 5 tojilow #, via a wave equation, but restricts us to wave-
off. If we consider the spatial component of any wave equajengths>0.1 mm as discussed in Sec. Il A. Initially, we
tion on a spherical cortex, the eigenfunctions satisfy implement Eq(14) on a square grid with periodic boundary
conditions, corresponding to a cortex with toroidal topology.

B. Spherical cortex

[(1+1) ; ; ™ : — a7 i
24 — ' 60 By introducing the auxiliary fieldy=e™ Y'¢, Eq. (14) is
Y Pe (60 transformed to the form of the standard wave equation:

. . . . 2
wherel is the principal quantum number of the eigenfunction

in question, andr; is the radius of the sphere. Solutions are
of the form ¢.=e€™m¢P"(cos6) whereP]" is an associated
Legendre functiof22], m is the azimuthal quantum number, This enables us to use standard routines to gtégrward in
and# and¢ are standard spherical coordinates. As a result ofime, although we actually storé. at each step to avoid

_ 2v2

i Y(r,H)=7vee 7EQq(r ). (61)
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underflow at large due to the exponential factor in E@1).

We solve Eq.(61) in coordinate space, rather than Fourier 250" T
space, so as to enable the most straightforward generalization
to more complicated geometries in future, where Fourier 200
methods are not applicablg.g., on a convoluted cortgx
Our approach will also allow inhomogeneities and anisotro- 150
pies to be relatively easily incorporated in future. >
On anN XN grid, the runtime of our code scales B$ 100

per time step. This represents a major improvement on the
Green-function method used in previous nonlinear calcula-
tions[7,13-19, where the runtime required to evaluate the
Green functions scaled & per time step. Direct compari- o o
sons of the two methods verify a speedup of ondérwhich °0 50 100 150 200 250
enables us to attain adequate whole-cortex resolution. Stor-
age is also dramatically reduced through the use of Eqgs.
(10—(12) and(14), which are time local and require storage o o i i
of only a few configurations of the system needed by the FIG: 8. The distribution oRQ, at one time in a simulation on a
time-stepping routinegstorage~N?). In contrast, previous 256256 g”d.' The system was driven b{a 5_00 ssinusoidal
methods stored of order 100 previous configurations of th |gEa| Qs applledhto f‘?‘ 66 central areax=Ay=2.18 mm and
system to treat the dendritic lagstorage~ 1OG\I2) and of t=0.05 ms. In the figur& andy are measured in units &fx and
- ) . Ay, respectively.

orderN previous configurations to evaluate the Green func-
tion (storage~N3).

50}

X

steady-state solutions, and the remainder toQhe 1 solu-
tion. With Q; initialized to unity, almost the same result was
B. Steady-state solutions obtained: simulations havin@, initialized to 0.000—0.035
In Sec. Il approximate steady-state solutions were deconverged to the lowest of the steady-state solutions, and the

rived, and in Figs. 4 ah5 a comparison was made with the remainder to th&.=1 solution.
exact solutions folQ, and Q;. With the numerical imple- This series of simulations supports our theoretical linear-
mentation of the dynamical equations, as described above, stability result that the upper branch of solutions in Fig. 4 is
is possible to determine the accuracy of the analytic approxiunstable, because convergence is only ever to the other two
mations made previously and of the resulting fixed-point essolutions. Indeed, initializing all variables as nearly as pos-
timates. This was done for several different valueQgf,  sible to those of an upper branch fixed point resulted in un-
including values for which there are three possible fixedstable behavior: after initial slow evolution, it eventually
points, and larger values @, for which there is just one converged to one of the other two fixed points.
fixed point. We chose the grid ratio to be |n addition to the above, we can infer the approximate
p=vAt/Ax=0.1. A grid of 100<100 was employed, al- form of the basin of attraction of the stable solutions. Alter-

Fhough the results are not sgn;_itive to g_rid size. There is kg the initialization ofQ; from zero to unity had only a
important dependence on initial conditions though. The

. ) . small effect on the ultimate steady state. Whether the initial
sta_ble states both have the_ur own basins of attraction Charaf’}élue of Q. is larger or smaller than its value at the unstable
terized by low and by high firing rates, and so we setf. < o ; .

- . . . ixed point is therefore the principal determinant of ultimate
Q.=Q;=0 initially for one series of simulations, and i L
Q.=Q;=1 for another. The other variables were initialized stat_e of the system; _the initial value @ can affect that
according to Eqs(20)—(23). The results are shown as Squarechplce only whenQ, is close to that of the unstable fixed
symbols in Figs. 4 and &howing low and high firing-rate POt - _ _
steady-state solutions, respectiveliis expected, the former  With regard to the reproducibility of the fixed points us-
set of simulations converged to the stable, lowest firing-ratd9 the full nonlinear simulation, errors in the final values of
fixed point, except forQ,=1.000, in which case no such Qe andQ; were of the order of 10° for p=vAt/Ax=0.1.
solution exists and they converged to the stable, high firingThe accuracy of simulations worsens for larger valuep,of
rate fixed point. The latter series, wi, andQ; initialized ~ and whenp=1/y2 (related to the Courant condition for the
to unity, always converged to the high firing-rate fixed point.two-dimensional explicit difference methpthe numerical

From the discussion of linear stability in Sec. IV B, we solutions become unstable. Much smaller valuep fad to
expect the upper branch of the curves in Fig. 4 to be uneumulative rounding errors unless more sophisticated time-
stable. This expectation was supported by a further set aftepping routines are used. The choicepddiso affects the
simulations in whiclQ.swas arbitarily set to 0.6 anQ. was  accuracy of convergence, as do the initial values of the vari-
initialized to values in the range 0.000-0.050 at intervals ofables. Variation of the initial value dD, gave rise to mar-
0.005, to cover the range defined by the two IQusteady- ginally different values of the final steady-state variables.
state solutions forQ.,=0.6, namely, Q.=0.009 and These differences, also of order 1) provide another esti-
Q.=0.032. For completeness, initial values mate of the accuracy of the calculations. Of course such
Q.=0.100-1.000 at intervals of 0.100 were also used. Withemall errors are negligible in applications because cerebral
Q; initialized to zero, it was found that simulations having parameters are known only approximately and measurements
Q. initialized to 0.000—0.030 converged to the lowest of thecannot distinguish such small differences in firing rates.
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s~ 1. (The next mode is at 1437, but there is so little
signal at frequenciex 120 s~ ! as to be beyond the precision
of the analysis.

A further point demonstrated by this example is the rela-
tionship between damping and the width of the resonance
peak. Increasing. had the effect of reducing.=v/r to
10.8 s %, and this is reflected in the observed resonance peak
width.

100 150 The main implications of this example afe very low
values of y,=v/r, are needed to see resonances, as dis-
cussed in Sec. V A, angi) experimentally In» can be es-
timated from the width of the alpha resonance. The first point
Ysheds some doubt on Nunez's global resonance picture, un-
lessy, is smaller than previously thought.
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FIG. 9. Spectral amplitudes for the case of periodic boundar
conditions. A grid of 220 points was used, with
Ax=Ay=27.9 mm, driven by spatially coherent white noi®g
along the column defined by=0, and the resulting activitfd.
measured at a poimt=10Ax, y=10Ay for a total of 100 2.048 s. VIl. SUMMARY AND DISCUSSION
Spectral amplitudes are normalized to the spectrum of the input
signal.Q,=0.7, =100 s !, and3=350 s 1. The dashed line is
for r,=0.19_,, 7,=108 s %, and the solid line is for ,=1.50,,
7e=10.8 s 1. All other parameters were as in Table IIl.

Motivated by the need for a formulation of cerebral activ-
ity that is analytically and numerically tractable, we have
formulated a set of nonlinear continuum equations that sat-
isfies these requirements. These equations embody the non-
) linear responséon averagg of neurons to imposed poten-
C. Wave propagation tials, the presence of excitatory and inhibitory populations,

The existence of roots of the dispersion relation havingand axonal and dendritic lags, and provide the framework for
nonzero real parts means that the system supports travelifgwide variety of analytic and numerical calculations.
waves. This is demonstrated in Fig. 8, in which a 2356 Analytically, we have used our model to study the steady-
grid has its central & 6 points driven by a sinusoidal signal State behavior of the cortex, and its stability, as well as linear
with ©=500 s~ %. The amplitude of the driving signal was Waves propagating in bounded and unbounded models of the
0.01 andQ,s was set to 0.7. With reference to Figa# this cortex. N_umerlcally, the speed at which our nonlinear system
was sufficient to maintain activitie&) within the basin of ~¢an be simulated is of the same order as that for the corre-
attraction of the nonseizure state, ail within physiologi- ~ SPonding linear one, thereby enabling adequate whole-brain
cal limits. A concentric distribution of traveling waves is 'esolution to be obtained in a 2D nonlinear model. The main
evident, and the scale length of damping.%83.7 mm reSl_JIts of th_e_ present study are summa_rlzed next.
= 40 grid unit$ may be appreciated. This degree of damping (i) Dendritic lags have been treated in a way that is both

does not allow accurate estimation of the wavelength, but théMpler and closer to physiological measurements than in
expectation, from the dispersion relatiés®), of \=52 grid ~ Previous work. This enables analytic treatment and reduces

units is at least approximately borne out. nurr'l_erical runtime and storage requ.iremen.ts. _
(i) The propagation of axonal signals, including axonal

delays, has been formulated in terms of a wave equation.
This bears some similarities to previous wave equations, but
As another demonstration of the dynamical properties otioes not assume that the system as a whole is linear. Our
the model, we consider the square cortex with periodiavave-equation formulation is analytically tractable and dra-
boundary conditions discussed in Sec. V A, and in Table lll.matically faster to treat numerically than its Green-function
Figure 9 is the result of driving this system along one columnpredecessor. Numerical storage requirements are also far
(x=0,y=0-19Ay, Ay=27.9 mnm) with spatially uniform |ower.
white noise, and recording the values@f at a site distant (iii) The results emphasize the importance of both den-
from the sites of stimulation. A total of 100 periods of 2.048 dritic and axonal delays in determining the dispersion rela-
s were recorded, transformed to give amplitude spectra, anibns of cortical waves and, hence, global eigenfunctions.
averaged. The nonspecific excitatiQns was set equal to 0.7 (iv) The criteria for ignoring the finite range of inhibitory
to make this figure match the eigenfrequencies listed irfibers have been made more explicit.
Table Ill. With all other system parameters as in Table | (v) An analytic fixed-point analysis has been done to de-
(humar) the dashed line in Fig. 9 was obtained. This showstermine the steady states of the system. Three fixed points
no apparent resonance because for the eigenfrequencies toli®ve been found, one of which is unstable. Of the other two,
clearly visible the damping length, must bexL,. To dem-  one represents a “normal” state of low activity, while the
onstrate resonance, was set to the somewhat unrealistic other represents a saturated “seizure” state in which activity
figure of 1.9.5, and a resonance peak was then obtaineds near its maximum.
(Fig. 9, solid ling. The location of the peak is also consistent  (vi) Dispersion equations have been derived for small-
with the dispersion relatio52): with this revised value of amplitude linear waves. These equations incorporate both
re, the n,=n,=0 mode becomes purely damped and theaxonal propagation and dendritic lags. The limit in which
first oscillatory mode is then then,=1n,=0 (or dendritic lags can be neglected is elucidated and it is shown
ny=0n,=1) mode having an expected frequency of 101that an earlier equatiofl2] is reproduced in this limit.

D. Power spectra
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(vii) A stability boundary has been described, beyond
which a seizure will set in. Under normal conditions the
cortex is not far from this boundary, consistent with the view
that complex, self-organizing systems must be near ‘“the
edge of stability” to function properly. This emphasizes the
prospect for future work to analyze internal controls of cere-
bral dynamics, such as regulation of local and global inhibi-
tion, which may exploit this near-marginally stable behavior
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to produce much richer dynami€g] 0 —t—r— '
(viii) The effects of boundary conditions have been stud- 0 10 20 30 40 50 €0
ied for a square cortex with periodic boundary conditions R (mm)
and for a spherical cortex, yielding discrete eigenfrequencies
in the relevant physiological ranges. FIG. 10. Green functiofA6) for y,=108 s 1, r,=84 mm, and

(ix) Numerical solutions of our model equations havev=9 m s ! for t=2, 4, and 6 ms, from left to right.
confirmed the existence of one steady-state solution with a
high firing rate, and two steady-state solutions with a lowthe Green function can be immediately evaluated from the
firing rate. Of the latter pair, only the lower is stable, andFourier transforms of Eq¢14) and (A1), giving
both requireQ,s to be less than a limiting value given ap-

proximately by Eq.(36). If Qs is large enough the system ?

will saturate. The system will also saturate if the state is Glkw)= (y—iw)?+k%? (A2)
moved to some point witl, greater than that of the un- . ) _
stable fixed point. The inverse Fourier transform of EGA2) then yields

(X) Numerical simulations have demonstrated the exis- a2k rd
tence of trave:ling waves. . _ G(R, T):f , _weikR—iwrG(k’w) (A3)

(xi) Numerical simulations have confirmed theoretical re- (2m)°) 2
sults that sharp resonances are impossible unless the damp- )
ing parametery, is substantially smaller than previously _ye (e . 2m ikR cosd
supposed. This casts some doubt on previous suggestions 47 Jo dk sin(kv 7) o do e (Ad)
that the alpha rhythm is a global resonance of the cortex. If,
however, this rhythnis a global resonance, the imaginary Y2e T [
part of its frequency can be estimated experimentally from = f dk sin(kv 7)Jo(kR) (A5)
! . 2mv Jo
its width.
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APPENDIX A: GREEN FUNCTIONS f dZRf dr G(R,T)If d’R 27 >Ko(Rylv) (A7)
mu

AND GENERALIZED WAVE EQUATIONS

This appendix discusses the connection between the wave =1, (A8)
equation(14), its Green function, and the corresponding ax-
onal range distribution. It then compares the Green functiomwhereKg is a modified Bessel function of the second kiiad
with that used by Wright and Liley13,14], and explains Macdonald functioh [22]. The result(A8) is required on
how Eq.(14) can be generalized to a broader class of mediaphysical grounds to ensure conservation of pulses. Note that
the integrand in Eq(A7) represents the time-integrated re-
sponse at a distand® i.e., the total number of pulses reach-
ing a unit area at that distance.
The solution of Eq.(14) can be written in terms of a Figure 10 shows E¢A6) at various times. One point to
Green functionG as note is thatG(R, 7) is not ad function atR=wv r, unlike in
the better known three-dimensional case. Rather, it is a func-
d)(f,t):f dzr’f dt’ G(r.t:r’ )Q(r' .t'), (A1) tiqn that is concentrated clos.e tq the pdmt:vr', but with a
tail at smallerR. Such behavior is also seen in the standard
2D wave equation without damping terms and is character-
where subscripts have been omitted for simplicity. In an isodstic of wave propagation in a 2D geometry. Writing
tropic medium,G depends only on the distané&=|r—r’| G(R)=Jd7 G(R,7), Eq. (A6) implies G(R)=Ky(R/ry)/
and the time difference=t—t’. The Fourier transform of 2ar3~(R/ro)~ Y2exp(—Riro) at largeR, whererq=v/7y, im-

1. Green functions
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plying that axons have a characteristic range At small  with an equation of the forriL4) or (A10) for eachj. This is

R, G(R)~ —In(Rirp), which may appear at first sight to be also a suitable way to allow for a range of different propa-
pathological. However, the total number of synapses at ranggation velocities, also parametrized py12]. Furthermore, it

R is proportional to 2rR G(R), which remains finite. Also, it is straightforward to generalize E4A10) by making the
should be remembered that this logarithmic singularity iscoefficients slowly varying functions of time and position.
present intrinsically in the standard 2D wave equation, which

does not vyield singular responses to nonsingular inputs. If APPENDIX B: INSTABILITY BOUNDARY ANALYSIS
desired, the singularity can be removed by replacing

Ko(r/ro) by In this appendix we outline the proof that the stability

boundary for the quartic dispersion relati¢b?) cannot be
ro 2Ko(RITg) =17 2Ko(RITY), (A9)  set by a pair of complex-conjugate roots havinguR®,
whereu=—iw. In our proof by contradiction, we assume
with r,<<r,. This Green function has no singularity and cor- that there are two conjugate roatg=iz andu,= —iz at the
responds to a pair of fields with characteristic rangeand  point of marginal stability, witte>0. We then show that this
r,, and ¢ equal to their difference. In general, the secondassumption contradicts the requirem@&@m:=0, with G given
field requires the introduction of an additional wave equatiorby Eq. (53). Hence the stability boundary is set by the con-
but a local approximation may be possible since it has a shodition u=0, which leads to Eq(56).
range. Equation(52) can be expanded to yield
A Green function of the fornfA6) is implicit in the work 4. 3 ) s 5 o
of Nunez[12], who used a wave equation of the fofi) to ~ 0=U"t U (a+tB+2y)+uTaf+2y(atB)+y +kv]

study linear cortical waves. Wright and Liley’'s, form Fur2 (ot 24 k2,2
[7,13,14 involves aé function, as in Eqs(17) and (18), so [2apyt(atB)ly il
the correspondence with the present work is not exact. Com-  + a8[ y?(1—G)+k%v?], (B1)

parison of their distribution of axonal ranges with the present ] ) o
form is achieved by integrating over time, as in EA?) where the SUbSCI’Ipt Ofe has been omitted for Slmp|ICIty.
The result should be compared with Wright and Liley’'s

G(R). They typically chos&(R) «exp( Rzlré), wherer  is 1. Stable roots in a complex-conjugate pair

a constant; however, the closest lafgeorrespondence be- If we suppose that, at the point of marginal stability, there
tween the two models would be obtained by substituting theare two stable roots given byus=—x+iy and
form (A7) for G(R) in Wright and Liley’s model. u,=—x—1iy, wherex,y>0, then

4 30 12(w2 42 52 20421 2
2. Generalized wave equations 0=u*+2xu+ U (X*+y*+2%) + 2xZu+ 25 (x*+y )(.BZ)
It is straightforward to generalize the wave equatitd)

in a number of ways. Most obviously, one could replace it byEquating the coefficients in Eqé81) and(B2) and eliminat-

the form ing x andy vyields
72 P , 2afy+(a+tp) (Y +k%?)
22yt 72—v§(91~V)Z—vi(ez'V)2}¢=72Q, Z= atB+2y ' B3)
(A10) 2 2 2
— 2 2.2 2
where the subscripts and argumentsfoindQ have again G~ 17 ¥z aﬂyi[“ﬂ"'zy(“"'ﬂ)"' Yk =27,
been omitted for simplicity. This equation represents a case (B4)

of anisotropic propagation velocity, with velocities and ] ] . ) ]
v, along orthogonal principal axes ande,. The effective  Direct expansion of the right side of E¢B4), using Eq.
axonal ranges in these two directions are thgriy and  (B3), shows that it is always negative fary,z>0, contra-
voly. dicting the required sign ob.

A second way in which Eq(14) can be generalized is to
assume that there are a number of different axonal popula- 2. Stable roots real
tions j characterized by different rangeg; and velocities The only remaining case is the one in which the two
vj. This is an extension of the procedure described in th&table roots are real with values=—x and u,=—Yy, for
preceding section for removing the singularity @(R). In  positive x andy. If we expand the resulting equation and

this more general case, one can write equate coefficients with those in E@1) we again arrive at
Egs.(B3) and(B4). Hence this case also yields a contradic-
b= &; (A11) tion, implying that Eq.(53) is the instability criterion under
]

all circumstances.
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